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ABSTRACT

The goal of this paper is to study the hypothesis testing us-
ing a parametric statistical model with nuisance parameters
based on quantized observations and related to the detection
of hidden information.

Index Terms— Statistical decision, quantized observa-
tions, parametric model, asymptotic local approach, hidden
information detection.

1. INTRODUCTION AND CONTRIBUTION

In the last two decades substantial progress has been made
in the detection of hidden information or hidden communica-
tion channels in media files or streams. Typically, it is nec-
essary to reliably detect in a huge set of files (image, audio,
and video) which of these files contain the hidden informa-
tion (like a text, an image,..). An important challenge is to get
the hidden information detection algorithms with analytically
predictable probabilities of false alarm and missed detection.
The following theoretical problems remain unsolved :

∙ How to deal with the quantized observations? How
does the quantization impact the probabilities of false
alarm and missed detection ?

∙ What is the benefits from using a parametric statistical
model of cover media (or cover channel) for hidden in-
formation detection ?

Hence, the goal of this paper is to study the theoretical aspects
of hypothesis testing using a parametric statistical model with
nuisance parameters based on quantized observations and re-
lated to the detection of hidden information. It is worth not-
ing that the existence of a quantizer between the sensor and
the estimation algorithm leads to the increasing complexity of
estimation methods. Many results from the classical estima-
tion theory are not applicable to quantized data (for example,
the Gauss-Markov theorem). Some results on the estimation
by using quantized observations are available in the literature
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(see for instance [1, 2]). In contrast to the local likelihood ra-
tio quantization in distributed detection (see for instance [3]),
dealing with quantized observations in the presence of nui-
sance parameters in hypothesis testing is almost unknown.

The contribution of the paper is threefold. First, the im-
pact of the quantization on the probability of false alarm and
missed detection is studied. Equations for first two moments
of the log likelihood ratio are obtained. An asymptotic ex-
pression of the test power as a function of the false alarm rate
is given by Theorem 1. Second, when the embedding rate is
unknown, an asymptotic local uniformly most powerful test
is designed. Third, a realistic (regressive) model of cover me-
dia is integrated in the statistical GLR-type test. This test is
almost invariant. It is shown that this test is closely related to
the WS steganalysers reputed as very efficient [4].

The paper is organised as follows. Section 2 is devoted
to the case of perfectly known statistical model of cover me-
dia. The embedding rate is also assumed to be known. Sec-
tion 3 considers the case of unknown embedding rate and a
more realistic model of cover media. The theoretical compar-
ison between the proposed and some heuristic steganalysers is
discussed here. Finally, some conclusions are drawn in Sec-
tion 4.

2. STATISTICAL DECISION BASED ON
QUANTIZED OBSERVATIONS

2.1. Model of quantized cover media

Let us assume that the observation vectorCn = (c1, . . . , cn)T

which characterizes a cover media is defined in the following
manner :

Cn = Q1[Yn], Yn ∼ P�, (1)

where Q1[yi] = ⌊yi⌋ is the operation of uniform quantization
(integer part of yi) and the vector Yn = (y1, . . . , yn)T follows
the distribution P� parameterized by the parametric vector �
which describes the properties of media files or streams. In
the framework of hidden information detection, � is a nui-
sance parameter. The binary representation of c (the index is
omitted to seek simplicity) is c = Q1[y] =

∑q−1
i=0 bi2

i, where
bi = {0, 1}. A simplified model of quantization is used in
this paper. It is assumed that the saturation is absent, i.e. the



probability of the excess over the boundary 0 and 2q − 1 for
the observation y is negligible.

2.2. Problem statement : test between two hypotheses

First, let us define two alternative hypotheses for one quan-
tized observation z (seeking simplicity) :

ℋ0 : z = c = Q1[y] ∼ QQ1
= [q0, . . . , q2q−1]

and

ℋ1 : z=

{
Q2[y]+zs with probability R
c = Q1[y] with probability 1−R,

whereR is the embedding rate,Q2[y] =
∑q−1
i=1 bi2

i, is an uni-
form quantization by using 2q−1 thresholds, Q2[y] ∼ QQ2

,
zs ∼ Qs = B(1, p) is the Bernoulli distribution which de-
fines the hidden information (usually p = 0.5). To get
the double quantization Q2[y] from Q1[y] it is assumed that
b0 ≡ 0. Under hypothesis ℋ1, the Least Significant Bit
LSB(Q1[y]) = b0 is used as a container of hidden information
because the LSB-based steganography provides serious em-
bedding capacity without introducing significant distortions.
The discrete distributions QQ1(. . .), QQ2(. . .) represent the
quantized observation z without hidden information and Qs
represents the hidden information.

2.3. A known embedding rate. Two simple hypotheses :
likelihood ratio test

Let us suppose that the distributions Qs, QQ1 , QQ2 and the
embedding rate R are exactly known. In this case the likeli-
hood ratio (LR) for one observation is written as follows :

ΛR(z) = R
QQ2

(Q2[y])

2QQ1
(Q1[y])

+ (1−R) (2)

The most powerful (MP) Neyman-Pearson test � over the
class

K�0 = {� : ℙ0(�(Zn) = ℋ1) ≤ �0} ,

where ℙi(. . .) denotes the probability under hypothesis ℋi,
i = 0, 1, is given by the following decision rule :

�R(Zn)=

⎧⎨⎩
ℋ0 if ΛR(Zn)=

n∏
i=1

ΛR(zi) < ℎ

ℋ1 if ΛR(Zn)=

n∏
i=1

ΛR(zi) ≥ ℎ

. (3)

The threshold ℎ is defined as a solution of ℙ0(ΛR(Zn) ≥
ℎ) = �0. The MP test �R(Zn) maximizes the power

��R = 1− ℙ1(�R(Zn) = ℋ0) = 1− �1

over the class K�0
.

2.4. The moments of approximate log likelihood ratio

Let Yn ∼ N (�, �2). The approximation of the log LR
log ΛR(Zn) (see equation (2)) by neglecting the corrective
term related to quantized Gaussian law and under assumption
that R = 1 is given by

logΛ̃1(Zn)=

n∑
i=1

1

2�2

[
− (Q2[yi]+1−�)2+(Q1[yi]+0.5−�)2

]
.

(4)
It follows from the central limit theorem that the fraction

log Λ̃1(Zn)− nEi
(

log Λ̃1(z)
)

�i
√
n

⇝
n→∞

N (0, 1), i = 0, 1,

where �2
i = Vari

(
log Λ̃1(z)

)
, will converge in distribu-

tion to the standard normal distribution as n goes to infin-
ity. The expectation and variance are denoted by Ei(. . .) and
Vari(. . .) underℋi, respectively. Hence, to compute the error
probabilities it is necessary to get the expectations and vari-
ances of the approximate log LR. Under hypothesis ℋ0, the
expectation of the approximate log LR is given by the follow-
ing expression

m0 = E0

[
log Λ̃1(z)

]
= − 1

8�2
+

"

�2
, (5)

where the coefficient " defines the impact of the quantization.
It can be proved that this coefficient is given by

"
def.
= E0 [�(b0 − 0.5)]

=

∞∑
m=−∞

[
Φ

(
2m+2−�

�

)
−Φ

(
2m+1−�

�

)]
(2m+1.5−�)

2

−
∞∑

m=−∞

[
Φ

(
2m+1−�

�

)
−Φ

(
2m−�
�

)]
(2m+0.5−�)

2
, (6)

where Φ(x) = 1√
2�

∫ x
−∞ e−

u2

2 du, �i = Q1[yi] + 0.5 − �,
b0,i = LSB(Q1[yi]). It can be also proved by analogy with
the previous equation that

�2
0 =Var0

[
log Λ̃1(z)

]
=

E0

[
�2
]
−4"2

4�4
, (7)

where

E0

[
�2
]
=

∞∑
m=−∞

[
Φ

(
m+1−�

�

)
−Φ

(
m−�
�

)]
(m+0.5−�)2.

Under hypothesis ℋ1, it is assumed that b0,i = zs,i. The
expectation and variance of the approximate log LR are given
by

m1 = E1

[
log Λ̃1(z)

]
=

1

8�2
, (8)

�2
1 = Var1

[
log Λ̃1(z)

]
=

1

4�4
E1

[
�2
]
, (9)



Fig. 1. The impact of the quantization on the probability of
missed detection �1.

where �i = Q2[yi] + 1 − �. To illustrate the impact of the
quantization, let us assume that : � ∈ [128; 132], � = 1 and
n = 200. The required probability of false alarm is �0 =
10−3. The comparison of theoretical equations for �1 with
the Monte Carlo simulation (106 repetitions) is presented in
Figure 1. The impact of quantization on the probability of
missed detection �1 is significant.

Theorem 1 Let the true embedding rate be R̃ : 0 < R̃ ≤ 1
but the log LR (4) is computed under assumption that R = 1.
The power of this test with taking into account the impact of
quantization is approximately given by (for large n) :

��1 ≃ 1−Φ

(
Φ−1(1− �0)

�0
�R̃
− (m1 −m0)R̃

√
n

�R̃

)
(10)

where �R̃ = f(m0,m1, �0, �1), mi and �i are computed by
using equations (5) - (9).

3. AN UNKNOWN EMBEDDING RATE

3.1. Two composite hypotheses

Let us assume that the distributionsQs,QQ1
,QQ2

are known,
but the embedding rate R is unknown. The following alterna-
tive composite hypotheses have to be tested by using n obser-
vations Zn representing the cover media :

ℋ0 = {R ≤ r∗} against ℋ1 = {R > r∗} (11)

Hence, the LR (2) becomes

ΛR0,R1
(Zn)=

n∏
i=1

R1
1
2QQ2

(Q2[yi])+(1−R1)QQ1
(Q1[yi])

R0
1
2QQ2

(Q2[yi])+(1−R0)QQ1
(Q1[yi])

,

(12)
where R0 ≤ r∗ < R1. The main difficulty is that
the values of acceptable R0 and unacceptable R1 embed-

ding rates are unknown. The ultimate challenge for any-
one in the case of two composite hypotheses is to get a uni-
formly MP (UMP) test � which maximizes the power func-
tion �(R) = 1 − ℙR(�(Zn) = ℋ0), where ℙR(. . .) de-
notes the probability under the assumption that the embed-
ding rate is equal to R, for any R > r∗ over the class
K�0 =

{
� : supR≤r∗ ℙR(�(Zn) = ℋ1) ≤ �0

}
. An efficient

solution is based on the asymptotic local approach proposed
by L. Le Cam [5]. The idea of this approach is that the “dis-
tance” between alternative hypotheses depends on the sample
size n in such a way that the two hypotheses get closer to each
other when n tends to infinity. By using an asymptotic expan-
sion of the log LR, a particular hypothesis testing problem
can be locally reduced to a relatively simple UMP hypothesis
testing problem between two Gaussian scalar means [5]. The
log LR can be re-written by using the following asymptotic
expansion

log Λ

(
Zn;

1√
n
�r

)
≃ 1√

n
�r�n(Zn; r∗)− 1

2
�2rℱ(r∗)

where ℱ(R) is the Fisher information and the efficient score
is given by

�n(Zn; r∗)=

n∑
i=1

�(zi; r
∗)=

n∑
i=1

Λ1(zi)−1

r∗Λ1(zi)+(1− r∗)
(13)

Therefore, the local UMP test to chose between two alterna-
tive hypotheses (11) is given by the following rule :

�r∗(Zn) =

{
ℋ0 if �n(Zn; r∗) < ℎ
ℋ1 if �n(Zn; r∗) ≥ ℎ

,

where ℎ is a solution of supR≤r∗ ℙR(�n(Zn; r∗) ≥ ℎ) = �0.

3.2. A more realistic model of cover media

As it follows from equation (10), the power � of an optimal
test depends on the standard deviation � of cover media for
a given rate of false alarm �0. Hence, to increase the power
�, someone has to reduce the standard deviation � by using a
parametric model of cover media. Often the observation vec-
tor Cn = (c1, . . . , cn)T which characterizes the cover media
can be defined by the following regression model :

Cn = Q1[Yn], Yn = Hx+ � ∼ N (Hx, �2In)

where H is a known [n × l] full rank matrix, n > l, x ∈ ℝl
is a nuisance parameter and �2 is the residual variance. The
vector Cn (pixels) is extracted from the cover media file (dig-
ital image, for instance) by using a specially chosen segment
or mask. Such a parametric model is an efficient method to
reduce the standard deviation �. The new hypothesis testing
problem with a parametric model of cover media consists in
deciding between the following hypotheses

ℋ0 : Zn = Cn = Q1[Yn], (14)



ℋ1: zi=

{
Q2[yi]+zs,i with probability R
ci=Q1[yi] with probability 1−R , (15)

where Yn = (y1, . . . , yn)T ∼ N (Hx, �2In). In practice, x
and �2 are unknown. The theoretical aspects of dealing with
nuisance parameters in the framework of statistical decision
theory is discussed in [6]. An efficient approach to this prob-
lem is based on the theory of invariance in statistics. The opti-
mal invariant tests and their properties in the context of image
processing have been designed and studied in [7, 8]. The pa-
rameter vector x can be estimated by using Q2[Yn] which is
free from the embedding information. The “approximate” log
GLR is given by

log Λ̂1(Zn) ≃ 1

�̂2
[PHQ2[Yn]]

T
[B0−0.5 ⋅1n]+

n

8�̂2
, (16)

where �̂2 is the maximum likelihood estimation of �2

based on Q2[Yn], In is an (n × n) identity matrix,
PH = In − H(HTH)−1HT is a projection matrix, B0 =
(b0,1, . . . , b0,n)T and 1n = (1, . . . , 1)T . The idea of the in-
variant hypotheses testing approach is based on the existence
of the natural invariance of the detection problem with re-
spect to a certain group of transformation. Let us note that the
above mentioned hypotheses testing problem given by (14) -
(15) remains “almost” invariant under the group of transla-
tions G = {g : g(Yn) = Yn + Hx}, x ∈ ℝl. The word
“almost” is due to the quantization Qj [y], j = 1, 2. Without
the quantization, the invariance will be exact.

3.3. Relation between the proposed and some known
heuristic tests

The first right hand side term in equation (16) defines the sen-
sitivity of the test because the second right hand side term
n

8�̂2
does not depend on the embedded secret message. The

first right hand side term in equation (16) represents an inner
product of the vector of “residuals” " = PHQ2[Yn], i.e. the
vector of the projection of Yn on the orthogonal complement
of the column space of H , and the vector [B0 − 0.5 ⋅ 1n]
composed of LSB(Q1[yi])− 0.5 :

n∑
i=1

=“weight”︷︸︸︷
�̂−2 ⋅

=“residual” "i︷ ︸︸ ︷
(Q2[yi]−(Hx̂)i + 1)⋅

=LSB(Q1[yi])−0.5︷ ︸︸ ︷
(b0,i−0.5) . (17)

Let us now compare the last equation with the recently de-
veloped WS steganalysers reputed very efficient [4]. These
steganalysers are based on the following statistics :

n∑
i=1

=“weight”︷︸︸︷
wi ⋅

=“residual” "i︷ ︸︸ ︷
(zi −ℱ(z)i) ⋅

=2⋅(LSB(Q1[yi])−0.5)︷ ︸︸ ︷
(zi − zi) , (18)

where ℱ(s) denotes a “filter” dedicated to estimate the cover-
image by filtering the stego-image, the weight wi is chosen

as 1
1+�2

i
, �2

i is the “local” variance and zi denotes the non-
negative integer zi with the LSB flipped. As it follows from
equations (17) - (18), the steganalysers developed in [4] co-
incide with the first term of the tractable log GLR (16). Nev-
ertheless, the second right hand side term

n

8�̂2
of (16) is also

necessary to correctly calculate the threshold ℎ as a solution
of the following equation

ℙ0(log Λ̂1(Zn) ≥ ℎ) = �0.

4. CONCLUSIONS

The impact of data quantization on the probability of false
decision in the problem of hidden information detection has
been studied. A local UMP test has been designed for the
case of unknown embedding rate. An almost invariant test
has been developed for a realistic model of cover media. A
relation between this test and some known heuristic steganal-
ysers has been established.
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