
Security and availability on embedded systems

N. Burger & Y. Langeron & R. Cogranne & P. Lallement
University of Technology of Troyes, Troyes, France

ABSTRACT: With the fast-paced development of the Internet of Things and its applications within the emerg-
ing field of Industry 4.0 - decentralizing decisions by remotely monitoring data and automata - the issues of
security and reliability of the whole communication pipeline between the connected devices taking part in this
smart industry become crucial. In such context of embedded systems, microcontrollers are widely preferred
over microprocessors as they are cheaper, smaller and less energy consuming. Unfortunately, the implementa-
tion of security features on microcontrollers, such as signing and ciphering functions, can largely reduce the
availability of embedded systems because these functions are energy consuming and computationally complex.
Thus, a trade-off has to be found between the prescribed level of availability and security. It is important to note
that such a trade-off greatly depends on how the embedded systems will be used, how they are supposed to com-
municate between each other and if a central node with high computing resources is available. For instance, a
common architecture typically consist of several embedded systems communicating up and down with a unique
server. Indeed, this architecture is used in several areas where a monitor must supervise and treat data, which is
the reason why this setup is chosen. The present paper aims at proposing a method to reach the right trade-off
between security and availability, depending on the available resources. However, this problem is difficult to
address because of the complexity to measure the security or the availability of a system. Solutions featuring
those characteristics and a generic approach are presented to find the most suitable trade-off, in the use case of
Industry 4.0.

1 INTRODUCTION

Embedded systems communicate between each
others since the beginning of computer engineering.
Today, these objects communicate on a network
larger day after day : the Internet. For several years
now the expression ”the Internet of Things” is
used. However, the expression ”embedded systems”
regroups many things : Smartphones, automobile
electronics, sensors, and miniaturized computers like
Raspberry... These objects have different function-
alities, hence different computational power. For
example, a communicating sensor embedded in a me-
chanical piece has physical constraints. Components
such as micro-controller, battery, antenna, etc will
be impacted by these constraints. If a Smartphone,
because of these constraints, is less powerful than a
computer, a communicating sensor will be much less
powerful than a sensor. These constraints alone can
define connected objects and their issues (Agrawal &
Das 2011).

The eco-system of embedded systems changed
drastically since their emergence. Embedded systems
were connected to a physical interface, that was

possible to physically secure. But with the more
and more numerous communicating objects - with
a server (for supervision purposes) or with other
objects - physical security to access an object is not
sufficient anymore (Sagstetter, Lukasiewycz, Stein-
horst, Wolf, Bouard, Harris, Jha, Peyrin, Poschmann,
& Chakraborty 2013).

Whether the communication is radio-based, wired,
or other, it is necessary to secure data exchanges. Se-
curity is a word that brings together many concepts.
These concepts can be split in three categories:

• Confidentiality: The data are exchanged without
anyone being able to understand it.

• Integrity: A modification of the exchanged data
is detectable.

• Authentication: The data are signed by an emit-
ter. The emitter can not repudiate the message.
Another entity can not impersonate the emitter.

These three categories cause several needs that
embedded systems must meet. Regardless of the sys-
tem, the tasks answering these needs will take time



and energy. Moreover, embedded systems will have
different options to answer these needs, depending
on their capabilities.

Comparing all the possible embedded systems
outweighs the scope of this paper. That is why this
study will focus on a specific restraint embedded
system based on a small, procedural, real-time
micro-controller with a transceiver. Possible appli-
cations, for a micro-controller like this, can be mass
production of communicating sensors for the industry
4.0 or home automation.

2 PROBLEM AND CONTEXT

2.1 Security definitions

Authentication, integrity and confidentiality are
based on mathematically complex functions. From an
emitter point of view, authentication can be answered
by a signature algorithm (S), integrity can be an-
swered by a hash algorithm (H), and confidentiality
can be answered by an encryption algorithm (E).
From a receiver perspective, authentication can be
answered by a verification algorithm (V ), integrity
can be answered by the same hash algorithm (H),
and confidentiality can be answered by a decryption
algorithm (D).

These functions take some time to execute :

• Ts: the time taken by S to sign a message

• Th: the time taken by H to hash a message

• Te: the time taken by E to encrypt a message

• Tv: the time taken by V to verify a signature

• Td: the time taken by D to decrypt a message

Moreover, security also influences autonomy
because these functions use computational power,
hence energy, and reduce the autonomy of an em-
bedded system. A balance must be found between
security and energy consumption, reliability and
real time constraints (Jiang, Pop, & Jiang 2017).
Nevertheless this study will focus on the availability
of the receiver from a real-time situation perspective.
Autonomy, influenced by the energy consumption of
the cryptographic functions, is discarded in this paper.

2.2 Embedded systems secured communications

Let’s take two embedded systems as in figure 1: an
emitter and a receiver.

Payload

1. Hash 3. Encrypt

2. Sign 5. Verify

7. Same result ?

4. Decrypt

6. Hash

Payload

Signature Ciphertext CiphertextSignature

Emitter Receiver

Figure 1: RSA signature

The emitter must:
• 1. Hash its message

• 2. Sign the hash of its message

• 3. Encrypt its message
The computing time for the emitter will be
Tem = Th + Ts + Te (1)

And the receiver must :
• 4. Decrypt the message

• 5. Hash the message decrypted

• 6. and 7. Verify the signature and compare with
the has previously calculated.

The computing time for the receiver will be
Tr = Td + Th + Tv (2)

The signature (emitter side) and decryption (re-
ceiver side) have to be done with a private key.
The receiver must be able to communicate with any
emitter, and because of memory limitations, it is not
possible to store the keys of all the emitters on the
receiver memory.

A private key, k1d, is used on the receiver for de-
cryption : only the receiver can decrypt the messages
from the emitter. And these messages were encrypted
with the public key k1e on the emitter.

Another private key, k2s is used on the emitter for
signing : only the emitter can sign its own messages.
These signatures will be verified by the receiver with
the public key k2v. Two couples of keys are then
needed : K1 = (k1e, k1d) and K2 = (k2s, k2v).

The receiver potentially manages many emitters.
For example, a receiver in a nuclear power plant re-
ceives messages from hundreds of emitters. Once the
messages received, they must be proceeded quickly
so the data are supervised in real-time.

When the receiver receives too many messages at
the same time, it will lead to message losses because
the receiver will be busy to decrypt and verify the
messages.

This study offers some methods to approach and
quantify these too many messages and at the same
time variables.



3 APPROACH AND METHODOLOGY

3.1 Security level and algorithms

First, some variables need to be fixed : the security
level chosen is the most secured in the sense it
manages the confidentiality, the integrity and the
authentication of the data.

Not all messages in real life need to be so secured,
but for the purpose of this article, the problem is
simplified to focus on the workload of the receiver.
Indeed, the receiver will be busy a certain amount of
time to check these three security parameters. First to
calculation of this duration is first needed.

RSA-1024bits with SHA1 is chosen, mainly for the
simplicity of the implementation, thanks to a C Mi-
crochip library. Each algorithm is set to its specific
functions:

• S: RSA-1024bits sign

• H: SHA1

• E: RSA-1024bits encrypt

• V : RSA-1024bits verify

• D: RSA-1024bits decrypt

The RSA functions of encryption-decryption can
be considered the same than the RSA signature-
verification ones since the mathematical operations
are the sames (Pawar & Ghumbre 2016). Indeed, in
our case, the only difference is the key used for each
operation:

• Encryption and decryption:

mk1e = c(modn) (3)

ck1d =m(modn) (4)

• Signature and verification:

mk2s = s(modn) (5)

sk2v =m(modn) (6)

The PKCS standard is used for the decryption
and verification (on the receiver). So the function is
mathematically optimized. Moreover, to balance the
workload on the receiver, smaller exponent are used
on its side, so the workload will be more important
on the emitter for one ciphering or signature. Then,
the workload per message is smaller on the receiver
than the emitter, but the receiver manages several
messages.

That is why equations 4 and 6 take a smaller
amount of time than equations 3 and 5.

Using a smaller exponent as a private key on the
receiver side for encryption may be a security issue :
attackers can guess more easily the private key if they
suppose it is a small exponent.

3.2 Embedded systems definition

The embedded system is an important variable on this
problem. A modest micro-controller has been cho-
sen to amplify the workload of both the receiver and
emitter. Choosing a micro-controller means fixing the
CPU speed, the Program Memory and the RAM. Each
of these three variables can influence the security in
some ways, because of memory limitation for exam-
ple.

The measurements were conducted on a
dsPIC30F3014 from Microchip with the specifi-
cations described in table 1.

Table 1: dsPIC30F3014 specifications
Parameter Value
Architecture 16-bit
CPU Speed (MIPS) 30
Memory Type Flash
Program Memory (KB) 24
RAM (KB) 2

An output of the micro-controller was set to 1 dur-
ing the operation, so the amount of time spent by the
micro-controller to do each operation can be checked.

3.3 Variables

Let’s note Tr the total duration needed for the re-
ceiver to verify the security (see 2), Tem the duration
between two emissions of the same emitter, and N
the number of emitters.

Other duration, like time to send data to a central
server, time to read some input on the receiver, time to
read the message from the antenna can influence the
availability of the system. However, these functions
were voluntarily omitted to simplify the problem and
to expose how security specifically influences the
availability (Jiang, Guo, Ma, & Sang 2012).

From these data, the number of messages a receiver
can treat without being overload can be determined,
depending of the security (more specifically the time
used for it) :

N = bTem/Trc (7)



4 RESULTS AND DISCUSSIONS

4.1 Measurements

In the figure 2, it is shown that with a specific Tr
and Tem, the receiver is totally busy. Graphically, it
is visible that after 10 emitters, the receiver will miss
some messages.

Figure 2: Receiver process time occupation

The assumption that messages follow each other
was done to simplify the problem. Real life emitter
can send messages at the same time, overlapping
each other time frame. A CSMA/CA-like can be
implemented by introducing an alea between each
messages but it would eventually return to this simple
case of receiver overload.

The execution times of the different operations are
referred in table 2 and were given by an oscilloscope.

Table 2: Operations and execution times.
Operation Execution

time
RSA 1024 signature + SHA1 158.4 ms
RSA 1024 verification + SHA1 6.8 ms
RSA 1024 encryption 159.2 ms
RSA 1024 decryption 6.8 ms

The total duration of unavailability for the receiver
when receiving a message is

Tr = 6.8 + 6.8 = 13.6ms

.
The minimum time frame for an emitter between

two message emissions is

Tem = 158.4 + 159.2 = 317.6ms

.

If emitters never sleep and continuously send mes-
sages to the receiver, a message will be received each
317.6 ms. It can now be determined that the number
of emitter a receiver can manage in optimal scenario
where messages are sent one after another is:

N = bTem/Trc = b317.6/13.6c = 23 (8)

Thus, 23 emitters can be associated to a receiver.

4.2 Comparisons and improvements

This result can be adapted to other scenario. For
example, time measurements with RSA-2048bits
will probably take more time for both emitters and
receivers and thus, change the number of emitters N .

Totally different encryption/decryption and sign-
ing/verifying algorithms can be used and compared
on this embedded system. For example, a combina-
tion of AES and RSA will probably give a different
N .

This comparison tool can be used to compare
embedded systems instead of algorithms. For exam-
ple, a measure done with AES128-CCM (symmetric
solution of encryption + integrity + authentication)
on a CC2538SF53 micro-controller supporting of
Hardware acceleration for cryptography gave us a
computing time of 210µs (encryption) and 120 µs
(decryption).

Symmetric algorithms, however, give a hard time
for key management. This paper doesn’t take into ac-
count this complexity, but some engineers could use
the asymmetric algorithms to exchange a symmetric
key.

This means that several type of messages will then
be exchange: some encrypted with RSA, some with
AES for example. That will imply different duration
for these messages but it can be easily implemented
on this method.

5 CONCLUSIONS

These results can be used to determine how many sen-
sors can be attributed to a receiver on a specific area.
Methods such as a header containing the ID of the
sensor can help the receiver to know if it must verify
the message or ignore it and thus, save time.
If an industry needs to deploy 30 sensors for instance,
in the case studied previously, two receivers will be
used.

Moreover, this method can be used to compare
micro-controllers, and it can help embedded systems
designers to better choose their components, regard-
ing their needs.

More research can add other constraints on the
equation, like the impact of security on the battery of
the emitter (receivers are supposed to be plugged on a
power source). This way, embedded systems design-
ers will be able to choose their level of security de-
pending on the real time and autonomy requirements.

REFERENCES

Agrawal, S. & M. L. Das (2011, December). Internet of
Things - A paradigm shift of future Internet applica-



tions. In Nirma University International Conference on
Engineering, pp. 1–7.

Jiang, W., Z. Guo, Y. Ma, & N. Sang (2012, June). Re-
search on Cryptographic Algorithms for Embedded
Real-time Systems: A Perspective of Measurement-
based Analysis. In 2012 IEEE 14th International Con-
ference on High Performance Computing and Commu-
nication 2012 IEEE 9th International Conference on
Embedded Software and Systems, pp. 1495–1501.

Jiang, W., P. Pop, & K. Jiang (2017, July). Design op-
timization for security- and safety-critical distributed
real-time applications. Microprocessors and Microsys-
tems 52(Supplement C), 401–415.

Pawar, A. B. & S. Ghumbre (2016, December). A survey
on IoT applications, security challenges and counter
measures. In 2016 International Conference on Com-
puting, Analytics and Security Trends (CAST), pp. 294–
299.

Sagstetter, F., M. Lukasiewycz, S. Steinhorst, M. Wolf,
A. Bouard, W. R. Harris, S. Jha, T. Peyrin,
A. Poschmann, & S. Chakraborty (2013, March). Se-
curity challenges in automotive hardware/software ar-
chitecture design. In 2013 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 458–463.


