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Abstract

The goal of this paper is to design a statistical test for the camera model identification problem from JPEG images. The approach
relies on the camera fingerprint extracted in the Discrete Cosine Transform (DCT) domain based on the state-of-the-art model of
DCT coefficients. The camera model identification problem is cast in the framework of hypothesis testing theory. In an ideal context
where all model parameters are perfectly known, the Likelihood Ratio Test is presented and its performances are theoretically
established. For a practical use, two Generalized Likelihood Ratio Tests are designed to deal with unknown model parameters such
that they can meet a prescribed false alarm probability while ensuring a high detection performance. Numerical results on simulated
and real JPEG images highlight the relevance of the proposed approach.

Keywords: Digital Forensics, Camera Model Identification, Hypothesis Testing, Natural Image Model, Discrete Cosine
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1. Introduction

The evolution of digital imaging technology and information
technologies in the past decades has raised a number of infor-
mation security challenges. Digital images can be easily edited,
altered or falsified because of a large availability of low-cost
image editing tools. Consequently, the credibility and trust-
worthiness of digital images have been eroded. This is more
crucial when falsified images that are utilized as evidence in a
courtroom could mislead the judgement and lead to either im-
prisonment for the innocent or freedom for the guilty. Digital
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image forensics has been emerged in response to the increasing
need to verify the trustworthiness of digital images, see [1] and
references therein for detailed introductions.

1.1. State of the Art

One of the key problems of digital image forensics is identi-
fication of image origin, which aims to verify whether a given
image was acquired by a specific camera or determine cam-
era models/brands as well as types of imaging mechanism (e.g.
scanners, cell-phone cameras, or computer graphics). Basically,
when an image is captured by a camera, it is stored with the
metadata headers in the memory storage device. The metadata,
e.g. Exchangeable Image File (EXIF) and JPEG headers, con-
tain all recording and compression history. Therefore, a sim-
plest way to determine the image’s source is to read out directly
from the metadata. However, such metadata headers are not al-
ways available in practice if the image is resaved in a different
format or recompressed. Another problem is that the metadata
headers are not reliable as they can be easily removed or mod-
ified using low-cost editing tools. Therefore, it is desirable for
law enforcement agencies to build up a set of reliable forensic
tools for image origin identification.
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In general, there are two approaches to address the problem
of image origin identification. Active forensics involves gener-
ating extrinsically security measures such as digital watermarks
[2] and digital signatures [3], referred to as extrinsic finger-
prints, and adding to the image file. However, active forensics is
of limited extent due to many strict constraints in its protocols.
In order to solve the problem of image origin identification in its
entirety, passive forensics has been quickly evolved. In contrast
to active forensics, passive forensics does not impose any con-
straint, nor require any prior information including the original
reference image. Forensic analysts have only the suspect im-
age at their disposal and must explore useful information from
that image to gather forensic evidence and trace the acquisition
device. The common philosophy in passive approach is to rely
on inherent intrinsic fingerprints that the digital camera leaves
in a given image. Passive forensics can be widely applied to
millions of images that circulate daily on communication net-
works.

This paper mainly addresses the origin identification of im-
ages acquired by digital cameras based on passive approach. It
is important to distinguish the problem of camera instance iden-
tification and the problem of camera model/brand identification.
More specifically, fingerprints used for camera instance identifi-
cation should capture individuality, especially cameras coming
from the same brand and model. For camera model/brand iden-
tification, it is necessary to exploit fingerprints that are shared
between cameras of the same model/brand but discriminative
for different camera models/brands. Passive forensic methods
proposed for those problems can be divided into two fundamen-
tal categories.

Technically, any method proposed for image origin identifi-
cation must respond to following questions:

1. Which fingerprints are utilized for identification?
2. How to extract these fingerprints accurately from a given

image?
3. Under which frameworks is the method designed to exploit

the discriminability of fingerprints extracted from images
captured by different sources1 and to calculate the similar-
ity of fingerprints extracted from images captured by the
same source?

Every stage from real-world scene acquisition to image stor-
age can provide intrinsic fingerprints for forensic analysis.
Therefore to design a camera fingerprint, it is necessary to study
the image processing pipeline of a digital camera. Although the
image processing pipeline is common for most cameras, each
processing step is performed according to manufacturers’ own
design. Thus the information left by each processing step is
useful to trace down to the device source.

Several fingerprints have been proposed in the literature.
Sensor Pattern Noise (SPN), which is caused by imperfections
during the manufacturing process and non-uniformity of photo-
electronic conversion due to inhomogeneity of silicon wafers, is

1The term source means an individual camera instance, a camera model, or
a camera brand.

used in [4] for camera instance identification. Two main com-
ponents of the SPN are the Fixed Pattern Noise (FPN) and the
Photo-Response Non-Uniformity (PRNU) noise. The FPN is
also used for camera instance identification in [5]. However it
can be compensated by subtracting a dark frame from the output
image, thus it is not a robust fingerprint and no longer used in
later works. The PRNU is directly exploited in [6, 7, 8]. More-
over, PRNU can be also used for camera model identification as
proposed in [9] based on the assumption that the fingerprint ob-
tained from images in the TIFF or JPEG format contains traces
of post-acquisition processes (e.g. demosaicing) that carry in-
formation about the camera model. Other fingerprints include
lens aberration [10], Color Filter Array (CFA) pattern and in-
terpolation algorithms [11, 12], and JPEG compression [13],
which are proposed for camera model/brand identification.

In general, the image origin identification problem can be
formulated into two frameworks: supervised classification [14]
and hypothesis testing [15]. Compared with hypothesis test-
ing framework, supervised classification framework is utilized
by most of existing methods in the literature to identify camera
brands/models. Based on above fingerprint, a forensic feature
set is designed and employed in a machine learning algorithm,
e.g. Support Vector Machines (SVM) [16]. Supervised classi-
fication framework involves three main drawbacks. To achieve
high accuracy, this framework requires an expensive training
stage that comprises many images with different characteristics
(e.g. image content or camera settings) from various sources for
representing a real-world situation, which might be unrealistic
in practice. Another drawback is the choice of an appropriate
forensic feature, which importantly affects the detection perfor-
mance of the classifier. Besides, the analytic establishment of
statistical performances still remains an open problem in super-
vised classification framework [17].

Even though those methods perform efficiently, they have
been designed with a very limited exploitation of hypothesis
testing theory and statistical image models. Therefore, their
performance can not be analytically established and is only
evaluated based on a large image database. Moreover, in the
operational context, it is crucial to warrant a prescribed false
alarm probability. Our previous work [18] proposed to design
a statistical test within hypothesis testing framework based on
the heteroscedastic noise model for camera model identification
from RAW images. Recently, this work has been extended in
[19] for camera model identification from JPEG images based
on the generalized noise model [20]. The proposed tests can
guarantee a false alarm probability while ensuring a high detec-
tion performance on a large database.

1.2. Main Contributions of the Paper
This paper aims to design a statistical test for camera model

identification from JPEG images, which is based on the same
methodology proposed in our previous works [18, 19]. The ap-
proach is based on fingerprint extracted in the Discrete Cosine
Transform (DCT) domain. The main motivation behind fin-
gerprint extraction in the DCT domain is that the statistics of
DCT coefficients change with different sensor noises combin-
ing with various in-camera processing algorithms. Relying on
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an accurate model of DCT coefficients allows us to capture this
statistical difference in natural images taken by different camera
models. The main contributions are the following:

• This paper is based on the state-of-the-art statistical model
of DCT coefficients [21, 22, 23] for fingerprint extraction.
The parameters (c, d) that characterize the linear relation
between two parameters α and β specified in the proposed
model of DCT coefficients are exploited as camera finger-
print for camera model identification.

• Stating the camera model identification problem in hy-
pothesis testing framework, the paper studies the optimal
detector given by the Likelihood Ratio Test (LRT) in an
ideal context where all model parameters are known. This
optimal detector serves as an upper-bound of any statisti-
cal test for the camera model identification problem.

• In the practical context, the model parameters are un-
known. The paper proposes two Generalized Likelihood
Ratio Tests (GLRTs) to deal with the difficulty of unknown
parameters. The statistical performance of the GLRTs is
analytically established. Moreover, the proposed GLRTs
allow the guaranteeing of a prescribed false-alarm rate and
the setting of decision threshold independently of the im-
age content, which is crucial in an operational context.
Numerical experiments also show that the loss of power
of GLRTs compared with the LRT is negligible.

1.3. Organization of the Paper
The paper is organized as follows. Section 2 presents the

camera fingerprint that is further exploited for camera model
identification. Section 3 designs an algorithm for camera fin-
gerprint extraction in the DCT domain. Section 4 states the
camera model identification problem in the framework of hy-
pothesis testing theory and studies the LRT assuming that all
model parameters are known in advance. Section 5 designs two
GLRTs to address the difficulty of unknown parameters. Sec-
tion 6 presents numerical results of two proposed GLRTs on
simulated and real JPEG images. Finally, Section 7 concludes
the paper.

2. Design of Camera Fingerprint

To design a camera fingerprint, it is vital to deeply under-
stand image characteristics during various stages of image pro-
cessing pipeline and study image statistics. Image processing
pipeline involves several steps from light capturing to image
storage performed in a digital camera, see details about image
processing pipeline in [24, 21, 23]. After measuring light inten-
sity at each pixel, RAW image that contains exactly informa-
tion recorded by the image sensor goes through some typical
post-acquisition processes, e.g. demosaicing, white-balancing
and gamma correction, to render a full-color high-quality out-
put image, referred to as TIFF image. Image compression can
be also performed for ease of storage and transmission.

The study of noise statistics in a natural image from RAW
format to TIFF format has been performed in our previous work

[20]. Firstly, the approach starts from the heteroscedastic noise
model proposed in [18], which is established by modeling var-
ious noise sources during RAW image acquisition [25]. The
heteroscedastic noise model characterizes more accurately the
RAW image than the Additive White Gaussian Noise (AWGN)
model widely used in image processing since it takes into ac-
count the contribution of Poisson noise in the acquisition pro-
cess. The heteroscedastic noise model is given as

xi ∼ N
(
µxi , aµxi + b

)
, (1)

where xi denotes a RAW pixel. The index of color channel
is omitted for simplicity. By convention, µX and σ2

X denote
respectively expectation and variance of a random variable X.
The parameters (a, b) was proposed in our previous work [18]
as fingerprint for camera model identification from RAW im-
ages. Then, assuming the operations of demosaicing and white-
balancing are linear, that approach [20] takes into account the
non-linear effect of gamma correction to develop a generalized
noise model, given as

σ2
zi

=
1
γ2 µ

2−2γ
zi (ãµγzi + b̃), (2)

where zi denotes an output pixel, γ is the correction factor, and
(ã, b̃) differ from the parameters (a, b) due to the operations of
demosaicing and white balancing. It is also shown in [20] that
the generalized noise model is relevant to characterize JPEG
images with moderate-to-high quality factors (QF ≥ 70). More
details of the generalized noise model are given in [20]. Simi-
larly, the parameters (ã, b̃, γ) are proposed in [19] as fingerprint
to identify camera models from JPEG images.

The next step in image processing pipeline is JPEG compres-
sion that involves transforming the TIFF image into the DCT
domain. To capture statistics of DCT coefficients accurately, it
is necessary to study the model of DCT coefficients. Based on
the assumption that the pixels are identically distributed within
8 × 8 block, our previous work [21, 22, 23] has recently pro-
posed a novel model of DCT coefficients, given by

fI(u) =

√
2
π

(
|u|

√
β
2

)α− 1
2

βαΓ(α)
Kα− 1

2

(
|u|

√
2
β

)
, (3)

where fX denotes the probability density function (pdf) with
respect to a random variable X, α is a positive shape param-
eter, β is a positive scale parameter, Γ(·) denotes the gamma
function and Kν(x) denotes the modified Bessel function [26,
chap. 5.5]. The proposed model of DCT coefficients outper-
forms the Laplacian, Generalized Gaussian, and Generalized
Gamma model, see more details in [23]. The parameters (α, β)
can be estimated following the Maximum Likelihood (ML) ap-
proach as proposed in [23].

Since the parameters (ã, b̃, γ) also contain information about
camera model, after transforming into DCT domain, this in-
formation is expanded over different frequencies. Therefore,
it is proposed to establish the relation between the parameters
(ã, b̃, γ) and (α, β) to capture such information in the DCT do-
main. For the sake of simplification, this relation is given by

β−1 = cα + d, (4)
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Figure 1: Estimated parameters (α, β) at frequency (0, 1) and (8, 8) of uniform
images generated using ã = 0.1, b̃ = 2, γ = 2.2.

where the parameters (c, d) depend on (ã, b̃, γ) (see more details
in Appendix A). This suggests that the parameters (c, d) can
be also used for camera model identification. It can be said that
while the relations (1) and (2) characterize the non-stationarity
of noise in the spatial domain, the relation (4) characterizes this
property in the DCT domain. The relation (4) can capture the
difference of noise statistics in natural images taken by differ-
ent camera models. Moreover, the linearity in relation (4) can
facilitate the estimation of the parameters (c, d). It should be
noted that in an image whose each 8 × 8 block is uniform, the
same parameters (α, β) and (c, d) are shared among DCT coeffi-
cients at different frequencies. The relation (4) on such images
is illustrated in Figure 1.

3. Extraction of Camera Fingerprint

An important requirement when using the parameters (c, d)
as camera fingerprint is that they should be invariant to im-
age content. Furthermore, to guarantee the above mathemati-
cal framework, it is necessary to work on homogeneous blocks.
These considerations are addressed in this section.

Because of heterogeneity and noise non-stationarity in a nat-
ural image, the energy tends to be more located in lower fre-
quencies. Consequently, DCT coefficients at different frequen-
cies do not share the same parameters (α, β) and (c, d). There-
fore, the estimation of parameters (α, β) and (c, d) should be
performed on each frequency separately. In this paper it is pro-
posed to arrange DCT coefficients into 64 vectors of coefficients
according to the zig-zag order. Let Ik = (Ik,1, . . . , Ik,N) with
k ∈ {1, . . . , 64}, be the vector of length N that contains coeffi-
cients at the frequency k. The coefficients (I1,i, . . . , I64,i) are in
the same block. Analogously, let denote the parameters (αk, βk)
and (ck, dk) with respect to the AC coefficients Ik.

3.1. Estimation of Parameters (ck, dk)
The proposed algorithm for estimation of parameters (ck, dk)

consists of three fundamental steps: image denoising, homoge-
neous block detection, and Least-Squares (LS) estimation [27].
Image denoising step aims to attenuate the impact of image
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Figure 2: Estimated parameters (α, β) at frequency (8, 8) of natural JPEG im-
ages issued from Canon Ixus 70 and Nikon D200 camera models.

content. The detection of homogeneous blocks is performed
subsequently to provide appropriate sample data for parameter
estimation. The LS approach is applied straightforwardly as the
relation (4) is linear.

Let Z be a two-dimensional matrix representing a natural im-
age. To remove the image content, a denoising filter D is em-
ployed so that the residual image W is given by

W = Z −D(Z). (5)

If Z is a color image, the denoising filterD is performed on each
color component, then three residual components are combined
into one residual image using the usual conversion from RGB
to grayscale

W = 0.2989Wr + 0.587Wg + 0.114Wb, (6)

where Wr, Wg, and Wb are respectively residuals of red, green,
and blue component. The residual image W is then transformed
into the DCT domain

I = DCT(W), (7)

where I is the image of DCT coefficients of the residual image
W.

For homogeneous block detection, this paper proposes to
calculate the standard deviation of each block and compare it
with a threshold λ. The median of absolute deviations (MAD),
which is considered as a robust estimator of standard devia-
tion [28], is utilized to calculate the standard deviation of each
block. The standard deviation of block i is calculated in the
DCT domain as

ŝi = 1.4826 ·MAD
(
I2,i, . . . , I64,i

)
. (8)

The DC coefficient I1,i is excluded in the calculation ŝi. The
block i is selected if the standard deviation ŝi is smaller than
the threshold λ. The number of selected homogeneous blocks
is denoted as Nb.

Suppose that L couples (α̂k,l, β̂k,l), l ∈ {1, . . . , L} are available,
the LS estimates of the parameters (ck, dk) are given by(

ĉk

d̂k

)
= (HT

k Hk)−1HT
k υk (9)



T. H. Thai, R. Cogranne, F. Retraint / Digital Signal Processing 00 (2015) 1–14 5

c

d

9 10 11 12 13 14 15 16
-5

-4

-3

-2

-1

0

1

2

Canon Ixus 70
Fujifilm J50

Nikon D200
Pentax A40

Praktica DCZ
Ricoh GX100

Figure 3: Estimated parameters (c, d) at frequency (8, 8) of natural JPEG im-
ages issued from different camera models in Dresden database.

with

Hk =


α̂k,1 1
...

...
α̂k,L 1

 and υk =


β̂−1

k,1
...

β̂−1
k,L

 ,
where HT

k and H−1
k denote respectively the transpose and in-

verse of the matrix Hk. The LS estimates (ĉk, d̂k) are unbiased
and asymptotically equivalent to ML estimates in large samples
[27].

As showed above, the LS approach requires several couples
(αk, βk) for estimation of parameters (ck, dk). One can collect
L images and estimate a couple (αk,l, βk,l) from all homoge-
neous blocks of each image following the ML approach [23].
However, from the practical point of view, it is necessary to
estimate the parameters (ck, dk) from a single image. This is ac-
complished by extracting randomly a subset of nb homogeneous
blocks from Nb blocks, then performing the ML estimation of
parameters (αk,l, βk,l) on this subset.

3.2. Property of Parameters (ck, dk)
When the image content is removed perfectly, the parameters

(ck, dk) remain identical for images with different image con-
tents. However, in practice, due to the fact that the perfect de-
noising filterD is difficult to obtain, the DCT coefficients at low
frequencies are still affected by image content. Meanwhile, the
coefficients at high frequencies contain mostly noises because
of the energy compaction property of DCT operation. Thus they
are more relevant to exploit for camera model identification.
Figure 2 shows the the linear relation (4) at frequency (8, 8) of
natural JPEG images taken by Canon Ixus 70 and Nikon D200
camera models. It should be noted that each point (α, β) in Fig-
ure 2 corresponds to one image. Figure 2 involves the JPEG
images with different imaged scenes, different camera settings,
different devices per model, and different environmental condi-
tions. This indicates that the parameters (ck, dk) remain similar
under those conditions.

Moreover, for camera model identification problem, it is nec-
essary to verify the discriminability of parameters (ck, dk) for
different camera models. The Figure 3 shows the parameters

(ck, dk) estimated from JPEG images at frequency (8, 8) for dif-
ferent camera models. This figure clearly shows their discrim-
inability between different camera models. Therefore, the pa-
rameters (ck, dk) are proposed to be exploited as camera finger-
print to identify camera models in this paper.

4. Optimal Detector for Camera Model Identification Prob-
lem

4.1. Hypothesis Testing Formulation

Let analyze two camera models S0 and S1. Each cam-
era model S j, j ∈ {0, 1}, is characterized by the parameters
(ck, j, dk, j), k ∈ {1, . . . ,K}, where K is the number of usable fre-
quencies for camera model identification. For obvious reasons,
it is assumed that (ck,0, dk,0) , (ck,1, dk,1). In a binary hypothe-
sis testing, the inspected image Z is either acquired by camera
model S0 or camera model S1. The goal of the test is to de-
cide between two hypotheses defined by ∀k ∈ {1, . . . ,K},∀i ∈
{1, . . . ,Nb} H0 =

{
Ik,i ∼ Pθk,0 , β

−1
k,0 = ck,0αk + dk,0

}
H1 =

{
Ik,i ∼ Pθk,1 , β

−1
k,1 = ck,1αk + dk,1

}
,

(10)

where Pθk, j , θk, j = (αk, ck, j, dk, j), denotes the probability distri-
bution of DCT coefficients Ik,i under hypothesis H j. As pre-
viously explained, this paper focuses on designing a test that
allows the guaranteeing of a prescribed false-alarm probability.
Hence, let

Kα0 =
{
δ : sup

θ0

PH0

[
δ(Z) = H1

]
≤ α0

}
be the class of tests whose the false alarm probability is upper-
bounded by the prescribed rate α0. Here θ0 = (θ1,0, . . . , θK,0)
is the vector containing all parameters, PH j

[
E
]

stands for the
probability of event E under hypothesis H j, j ∈ {0, 1}, and the
supremum over θ has to be understood as whatever model pa-
rameters might be. Among all the tests in the class Kα0 , it is
aimed at finding a test δ which maximizes the power function,
defined by the correct detection probability:

βδ = PH1

[
δ(Z) = H1

]
.

The problem (10) highlights three fundamental difficulties of
the camera model identification. First, even when all model
parameters (αk, ck, j, dk, j) are known, the most powerful test,
namely the LRT, has never been studied in the literature. The
second difficulty concerns unknown parameters αk in practice.
Finally, the camera parameters (ck, j, dk, j) are also unknown,
thus the hypothesisH j becomes composite.

Suppose that the camera model S0 is available, thus forensic
analysts can have access to its characteristics, or its fingerprints,
i.e. its camera parameters (ck,0, dk,0) can be known. Therefore,
they can make a decision by checking whether the image under
investigation Z contains the fingerprint (ck,0, dk,0). It is proposed
to solve the problem (10) when the alternative hypothesisH1 is
composite, i.e. the camera parameters (ck,1, dk,1) are unknown.
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It can be noted that a test that maximizes the correct detection
probability whatever (ck,1, dk,1) might scarcely exist [15]. The
main goal of this paper is to study the LRT and to design the
GLRTs to address the second and third difficulties.

4.2. Likelihood Ratio Test for Two Simple Hypotheses
When all model parameters are known, in virtue of the

Neyman-Pearson lemma [15, theorem 3.2.1], the most power-
ful test δ∗ solving the problem (10) is the LRT given by the
following decision rule

δ∗(Z) =


H0 if Λ(Z) =

K∑
k=1

Nb∑
i=1

Λ(Ik,i) < τ∗

H1 if Λ(Z) =

K∑
k=1

Nb∑
i=1

Λ(Ik,i) ≥ τ∗
(11)

where the decision threshold τ∗ is the solution of the equation

PH0

[
Λ(Z) ≥ τ∗

]
= α0 (12)

to ensure that the LRT is in the class Kα0 and the LR Λ(Ik,i) is
defined as

Λ(Ik,i) = log
Pθk,1

[
Ik,i

]
Pθk,0

[
Ik,i

] , (13)

assuming that the DCT coefficients are statistically indepen-
dent. From (3), it can be noted that the expression of the LR
Λ(Ik,i) is difficult to exploit for subsequent stages, e.g. the de-
sign of the GLRT and analytic establishment of its statistical
performance. Therefore it is proposed to simplify the LR Λ(Ik,i)
to facilitate the study in the manner that it does not cause any
loss of optimality.

Using the Laplace’s approximation [29, 30] (see more details
in Appendix B), the function fI(u) can be approximated as

fI(u) ≈
|u|α−1

(2β)
α
2 Γ(α)

exp

−|u|
√

2
β

 . (14)

Consequently, the LR Λ(Ik,i) can be simplified as

Λ(Ik,i) = log

|Ik,i |
αk−1

(2βk,1)
αk
2 Γ(αk)

exp
(
−|Ik,i|

√
2
βk,1

)
|Ik,i |

αk−1

(2βk,0)
αk
2 Γ(αk)

exp
(
−|Ik,i|

√
2
βk,0

)
=
αk

2
log

β−1
k,1

β−1
k,0

−
√

2|Ik,i|
(√

β−1
k,1 −

√
β−1

k,0

)
. (15)

It should be noted that other polynomial expansions for the
modified Bessel function Kν(x) are provided in [26], so a poly-
nomial approximation of fI(u) can be derived. However, those
approximations are not considered in this paper. The main ad-
vantage of the Laplace’s approximation (14) is to provide an ap-
proximation of the form of exponential family function, which
allows us to simplify the expression of the LR Λ(Ik,i). The ap-
proximating function (14) is used only for simplification of the
LR. The estimation of parameters (αk, βk) is always based on
the exact function (3).

In order to analytically establish the statistical performance
of the LRT, it is necessary to characterize the statistical distri-
bution of the LR Λ(Z) under each hypothesis H j. To this end,
it is proposed to rely on the Lindeberg Central Limit Theorem
(CLT) [15, theorem 11.2.5] that requires to calculate the expec-
tation and variance of Λ(Ik,i).

Proposition 1. Under hypothesis H j, the first two moments of
the LR Λ(Ik,i) are given by

mk, j , EH j

[
Λ(Ik,i)

]
=
αk

2
log

β−1
k,1

β−1
k,0

−
2
√
π
β

1
2
k, j

Γ(αk + 1
2 )

Γ(αk)

(√
β−1

k,1 −

√
β−1

k,0

)
(16)

vk, j , VarH j

[
Λ(Ik,i)

]
= 2

(√
β−1

k,1 −

√
β−1

k,0

)2

×
(
αkβk, j −

2βk, j

π

Γ2(αk + 1
2 )

Γ2(αk)

)
. (17)

where EH j [·] and VarH j [·] respectively denote the mathematical
expectation and variance under hypothesisH j.

Proof. of Proposition 1 is given in Appendix C.

In virtue of Lindeberg CLT, the statistical distribution of the
LR Λ(Z) under hypothesisH j is derived as

Λ(Z)
d
→ N

(
m j, v j

)
, (18)

where the notation
d
→ denotes the convergence in distribution

and the expectation m j and variance v j are given by

m j =

K∑
k=1

Nb∑
i=1

EH j

[
Λ(Ik,i)

]
=

K∑
k=1

Nbmk, j (19)

v j =

K∑
k=1

Nb∑
i=1

VarH j

[
Λ(Ik,i)

]
=

K∑
k=1

Nbvk, j. (20)

Since a natural image is heterogeneous, it is proposed to nor-
malize the LR Λ(Z) in order to set the decision threshold in-
dependently of the camera parameters. The normalized LR is
defined by Λ?(Z) =

Λ(Z)−m0√
v0

. Accordingly, the corresponding
LRT δ? is rewritten as follows

δ?(Z) =

H0 if Λ?(Z) < τ?

H1 if Λ?(Z) ≥ τ?
(21)

where the decision threshold τ? is the solution of the equation
PH0

[
Λ?(Z) ≥ τ?

]
= α0. The decision threshold τ? and the

power βδ? are given in following theorem.

Theorem 1. In an ideal context where all the model parameters
(αk, ck, j, dk, j) are exactly known, the decision threshold and the
power function of the LRT δ? are given by

τ? = Φ−1(1 − α0) (22)

βδ? = 1 − Φ

(
m0 − m1 + τ?

√
v0

√
v1

)
, (23)
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where Φ(·) and Φ−1(·) denotes respectively the cumulative dis-
tribution function of the standard Gaussian random variable
and its inverse.

The test power βδ? serves as an upper-bound of any statistical
test for the camera model identification problem. The test δ? al-
lows to warrant a prescribed false alarm rate and maximizes the
detection probability. Since its statistical performance is ana-
lytically established, it can provide an analytically predictable
result for any false alarm probability α0.

5. Practical Context: Generalized Likelihood Ratio Test

The scenario studied in the LRT may not be realistic because
the parameters (αk, ck,1, dk,1) are unknown in practice. This sec-
tion designs two GLRTs to deal with unknown parameters. It is
proposed to replace unknown parameters by their ML estimates
in the LR Λ(Ik,i) (15).

5.1. Generalized Likelihood Ratio Test with Unknown Param-
eters αk

In this subsection it is assumed that the camera parameters
(ck, j, dk, j) are known and we only deal with unknown nuisance
parameters αk. By replacing unknown parameter αk by its ML
estimate α̂k in the LR Λ(Ik,i) (15) (see more details about ML
estimation of parameters (αk, βk) in [23]), the Generalized Like-
lihood Ratio (GLR) Λ̂1(Ik,i) can be given by

Λ̂1(Ik,i) =
α̂k

2
log

ck,1α̂k + dk,1

ck,0α̂k + dk,0

−
√

2|Ik,i|
( √

ck,1α̂k + dk,1 −
√

ck,0α̂k + dk,0

)
. (24)

The ML estimate α̂k is asymptotically consistent [15], i.e.
it asymptotically converges in probability to its true value:
α̂k

p
→ αk. Therefore, from the Slutsky’s theorem [15, theo-

rem 11.2.11], the statistical distribution of the GLR Λ̂1(Z) =∑K
k=1

∑Nb
i=1 Λ̂1(Ik,i) under each hypothesis H j can be approxi-

mated as
Λ̂1(Z)

d
→ N

(
m j, v j

)
, (25)

where the expectation m j and variance v j are given in (19) and
(20), respectively.

Similarly, the normalized GLR Λ̂?
1 (Z) is defined by Λ̂?

1 (Z) =
Λ̂1(Z)−m0√

v0
. However, the expectation m0 and variance v0 can not

be defined in practice since the parameters αk are unknown.
Therefore, this paper proposes to replace αk by α̂k in (19) and
(20) to obtain the estimates of m0 and v0, denoted m̂0 and
v̂0. The normalized GLR Λ̂?

1 (Z) can be given in practice as

Λ̂?
1 (Z) =

Λ̂1(Z)−m̂0√
v̂0

. Since the estimates m̂0 and v̂0 are consistent,
it also follows from Slutsky’s theorem that

Λ̂?
1 (Z)

d
→ N(0, 1) under H0,

Λ̂?
1 (Z)

d
→ N

(
m1 − m0
√

v0
,

v1

v0

)
under H1.

(26)

Finally, the GLRT δ̂?1 based on the normalized GLR Λ̂?
1 (Z)

is given by

δ̂?1 (Z) =

H0 if Λ̂?
1 (Z) < τ̂?1

H1 if Λ̂?
1 (Z) ≥ τ̂?1

(27)

where the decision threshold τ̂?1 is the solution of the equation
PH0

[
Λ̂?

1 (Z) ≥ τ̂?1
]

= α0. From (26), the decision threshold and

the power of the GLRT δ̂?1 can be accordingly defined as in the
Theorem 1.

5.2. Generalized Likelihood Ratio Test with Unknown Param-
eters (αk, ck,1, dk,1)

Before designing the GLRT, the LS estimation of camera
parameters (ck,1, dk,1) is performed on the inspected image Z;
see Section 3. The LS estimates (ĉk,1, d̂k,1) are asymptotically
equivalent to ML estimates in large samples [27]. Moreover,
they are unbiaised and follow the asymptotic bivariate Gaus-
sian distribution(

ĉk,1

d̂k,1

)
∼ N

((
ck,1
dk,1

)
,

(
σ2

ck,1
σck,1dk,1

σck,1dk,1 σ2
dk,1

))
, (28)

where σ2
ck,1

, σ2
dk,1

, σck,1dk,1 denote the variance of ĉk,1, variance
of d̂k,1, and covariance between ĉk,1 and d̂k,1, respectively (see
also discussions in Section 6.1 for this covariance matrix). The
parameters (ck,1, dk,1) would characterize an unknown camera
model. It is require to take into account the variability of LS es-
timates (ĉk,1, d̂k,1) in the analytic establishment of performance
of the GLRT.

By replacing unknown parameters (αk, ck,1, dk,1) by
(α̂k, ĉk,1, d̂k,1) in the LR Λ(Ik,i) (15), the GLR Λ̂2(Ik,i) is
given by

Λ̂2(Ik,i) =
α̂k

2
log

ĉk,1α̂k + d̂k,1

ck,0α̂k + dk,0

−
√

2|Ik,i|
(√

ĉk,1α̂k + d̂k,1 −
√

ck,0α̂k + dk,0

)
. (29)

Proposition 2. Under hypothesis H j, from the Delta method
[15, theorem 11.2.14], the first two moments of the GLR Λ̂2(Ik,i)
can be approximated as

EH j

[
Λ̂2(Ik,i)

]
= mk, j (30)

VarH j

[
Λ̂2(Ik,i)

]
=

vk, j +
β2

k,1αk(αk + 2)

4

(
α2

kσ
2
ck,1

+ σ2
dk,1

+ 2αkσck,1dk,1

)
. (31)

Proof. of Proposition 2 is given in Appendix D.

For brevity, let denote ṽk, j = VarH j

[
Λ̂2(Ik,i)

]
. It can be noted

that the second term in (31) aims to take into account the vari-
ability of LS estimates (ĉk,1, d̂k,1). In virtue of Lindeberg CLT,
the GLR Λ̂2(Z) =

∑K
k=1

∑Nb
i=1 Λ̂2(Ik,i) follows the Gaussian dis-

tribution under each hypothesisH j

Λ̂2(Z)
d
→ N

(
m j, ṽ j

)
, (32)
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where the expectation m j is given in (19) and the variance ṽ j is
defined as

ṽ j =

K∑
k=1

Nbṽk, j. (33)

Finally, the GLRT δ̂?2 based on the normalized GLR Λ̂?
2 (Z) =

Λ̂2(Z)−m̂0√
ˆ̃v0

is written as

δ̂?2 (Z) =

H0 if Λ̂?
2 (Z) < τ̂?2

H1 if Λ̂?
2 (Z) ≥ τ̂?2

(34)

where the decision threshold τ̂?2 is the solution of the equa-
tion PH0

[
Λ̂?

2 (Z) ≥ τ̂?2

]
= α0 and m̂0 and ˆ̃v0 are estimates of

m0 and ṽ0 by replacing unknown parameters (αk, ck,1, dk,1) by
(α̂k, ĉk,1, d̂k,1) in (19) and (33), respectively. From the Slutsky’s
theorem [15, theorem 11.2.11], the decision threshold and the
power of the GLRT δ̂?2 are given in the following theorem.

Theorem 2. When the image Z is tested against the known
camera model S0 characterized by the parameters (ck,0, dk,0),
the decision threshold and the power of the GLRT δ̂?2 are given
by

τ̂?2 = Φ−1(1 − α0) (35)

βδ̂?2
= 1 − Φ

m0 − m1 + τ̂?2
√

ṽ0
√

ṽ1

 . (36)

The statistical performance of the proposed GLRTs δ̂?1 and
δ̂?2 is analytically provided. Moreover, they allow us to war-
rant a prescribed false alarm rate and set the decision thresh-
old independently of camera parameters (see (22) and (35)).
It is worth noting that the GLRT dealing with unknown pa-
rameters αk while the camera parameters (ck, j, dk, j) are known
can be interpreted as a closed hypothesis testing since the deci-
sion is made only between two known camera models S0 and
S1. Meanwhile, the GLRT dealing with unknown camera pa-
rameters (ck,1, dk,1) becomes an open hypothesis testing telling
whether the given image is acquired by camera model S0 or
not. The given image is allowed to be acquired by an unknown
camera model. Therefore, two proposed tests can be straight-
forwardly applied, depending on the requirements of the oper-
ational context.

6. Numerical Experiments

In this paper, the wavelet-based denoising filter proposed in
[31, 4] is employed to suppress image content because of its
relative accuracy and computational efficiency. Besides, the se-
lection of homogeneous blocks requires an appropriate thresh-
old λ. This threshold should be fixed independently of image
content. The threshold λ is set at λ = 0.5.

6.1. Detection Performance on Simulated Database
The implementation of the GLRT δ̂?2 requires to know the

covariance matrix of LS estimates (ĉk,1, d̂k,1). However, the ML
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Figure 4: Detection performance of proposed tests on simulated vectors with
1024 coefficients.
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Figure 5: Detection performance of proposed tests on simulated vectors with
4096 coefficients.

estimates (α̂k, β̂k) are solved numerically, which causes a dif-
ficulty of defining their statistical properties. Thus it seems
impossible to establish the covariance matrix of (ĉk, d̂k) ana-
lytically. To overcome this difficulty, it is proposed to estimate
the parameters (ck, dk) on each image from 50 images taken by
the camera model S0 since this camera model is assumed to be
available. Then the empirical covariance matrix can be calcu-
lated from previous couples (ĉk, d̂k). Speaking rigorously, this is
the covariance matrix characterizing the variability of the cam-
era parameters (ck,0, dk,0). By doing so, it is expected that the
parameters (ĉk,1, d̂k,1) fall into the neighborhood of (ck,0, dk,0),
namely that the inspected image Z is acquired by the camera
model S0. This leads us to exploit this covariance matrix in the
implementation of the GLRT δ̂?2 . This step is also performed in
the test with real images.

The detection performance of proposed tests is first theoret-
ically studied on simulated database. Suppose that the cam-
era models S0 and S1 are characterized by the parameters
(c0, d0) = (11.8,−3.5) and (c1, d1) = (13.5,−4.5), respectively.
These parameters correspond to frequency (8, 8) of JPEG im-
ages taken by Canon Ixus 70 and Nikon D200 camera models
in the Dresden image database [32], respectively (see Figure 2).
They are used to generate randomly 5000 vectors of 1024 and
4096 coefficients under H0 and H1. Because this paper pro-
poses to simplify the LR Λ(Ik,i) to facilitate the study, it is de-
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α0

βδ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ̂?1 : QF 90

δ̂?2 : QF 90

δ̂?1 : QF 75

δ̂?2 : QF 75

Figure 6: Detection performance of proposed tests for 1024 coefficients at fre-
quency (8, 8) extracted randomly from simulated images with different quality
factors.
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Figure 7: Detection performance of proposed tests for different number of co-
efficients at frequency (8, 8) of natural JPEG images taken by Canon Ixus 70
and Nikon D200 camera models.

sirable to compare the detection performance of the LRT based
on the approximating LR with the one based on the exact LR.
The expectation and variance of the exact LR are calculated nu-
merically. Moreover, it is necessary to compare the detection
performance of the proposed GLRTs with the LRT since the
GLRTs utilize ML estimates of unknown parameters, which
may cause a loss of power. Figure 4 and Figure 5 show the
detection performance of all proposed tests for 1024 and 4096
coefficients, respectively. For clarity, only regions of interest
are illustrated in the figures. It is worth noting that the loss of
power between the theoretical LRT and approximating LRT is
negligible. Besides, a small loss of power is revealed between
the GLRTs and LRT due to the estimation of unknown param-
eters. Nevertheless this loss of power decreases when the num-
ber of coefficients increases. It can be also noted that the loss
of power between two GLRTs δ̂?1 and δ̂?2 is negligible, i.e. the
variability of estimates (ĉk,1, d̂k,1) are well taken into account in
the GLRT δ̂?2 . The power function of all proposed tests is per-
fect (e.g. βδ = 1) from 214 coefficients for any false alarm rate
α0.

Moreover, it is desirable to study the detection performance
of the proposed tests on simulated images that follow the im-
age processing pipeline as described in Section 2. To this
end, suppose the camera models S0 and S1 are characterized
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

1

δ̂?2 : frequency (8,8)

δ̂?2 : frequency (7,7)

δ̂?2 : frequency (6,6)

δ̂?2 : frequency (5,5)

Figure 8: Detection performance of the GLRT δ̂?2 for 4096 coefficients at dif-
ferent frequencies of natural JPEG images taken by Canon Ixus 70 and Nikon
D200 camera models.
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Figure 9: Comparison between the theoretical false alarm probability (FAP)
and the empirical FAP, plotted as a function of decision threshold τ.

by the parameters (ã0, b̃0, γ0) = (0.1, 2, 2.2) and (ã1, b̃1, γ1) =

(0.2, 2, 2.2). These parameters are used together with the refer-
ence image lena to generate randomly 5000 images under H0
and H1. The simulated images are then compressed with qual-
ity factor of 90 and 75. The detection performance of the pro-
posed GLRTs for 1024 coefficients at frequency (8,8) extracted
randomly from those simulated images is shown in Figure 6.
As expected, a small loss of power is revealed with the decline
of quality factor.

6.2. Detection Performance on Two Canon Ixus 70 and Nikon
D200 Camera Models

It is important to remind that the proposed GLRTs are de-
signed in the framework of hypothesis testing theory where the
reference camera parameters (ck,0, dk,0) under hypothesisH0 are
assumed to be known in advance. Therefore, those parame-
ters need to be defined accurately in practice. To this end, the
parameters (ck, dk) are estimated on 50 images of the camera
model S0 and the reference parameter (ck,0, dk,0) is calculated
as the average of previous estimates (ĉk, d̂k). Evidently, using
more images will get a better estimate but it is also less realis-
tic. The number of 50 is a good trade-off.

To highlight the relevance of the proposed GLRTs, two
Canon Ixus 70 and Nikon D200 camera models of the Dres-
den image database [32] are chosen to conduct experiments.
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Tested images
Cn2 N1 Pe F Ro K N3 N2 Pr Ri S Avg.

H0

Cn2 100 26.54 20.42 * * * * * * * *
N1 * 84.61 10.56 * * * * * * * *
Pe * 7.79 82.04 * * * * * * * *
F * * * 91.67 6.63 * * * * * *

Ro * * * 22.92 100 * * * * * *
K * * * * * 99.81 14.15 * * * *

N3 * * * * * * 97.62 * * * *
N2 * * * * * * * 100 * * *
Pr * * * * * * * * 95.78 * *
Ri * * * * * * * * * 100 *
S * * * * * * * * * * 96.81

95.31

Table 2: Detection performance of proposed detector δ̂?2 (the symbol * represents values smaller than 2%)

Tested images
Cn2 N1 Pe F Ro K N3 N2 Pr Ri S Avg.

H0

Cn2 98.26 * * * * * * 2.61 * * *
N1 * 100 3.97 * * * * * * * *
Pe * * 90.86 * * * * * * * *
F * * * 99.94 * * * * * * *

Ro * * * * 99.79 * * * * * *
K * * * * * 99.19 * * * * *
N3 * * * * * * 84.57 * * * *
N2 * * * * * * * 93.73 * * *
Pr * * * * * * * * 98.42 * *
Ri * * * * * * * * * 100 *
S * * * * * * * * * * 98.23

96.63

Table 3: Detection performance of SVM-based detector [32]

Camera Model No. devices Resolution No. images
Canon Ixus 70 C 3 3072 × 2304 350
Fujifilm FinePix J50 F 3 3264 × 2448 350
Kodak M1063 K 5 3664 × 2748 550
Nikon Coolpix S710 N1 5 4352 × 3264 550
Nikon D200 N2 2 3872 × 2592 250
Nikon D70 N3 2 3008 × 2000 250
Pentax Optio A40 Pe 4 4000 × 3000 450
Praktica DCZ 5.9 Pr 5 2560 × 1920 550
Ricoh Capilo GX100 Ri 5 3648 × 2736 550
Rollei RCP-7325XS Ro 3 3072 × 2304 350
Sony DSC-H50 S 2 3456 × 2592 250∑

11 39 4450

Table 1: Camera Model Used in Experiments

The Canon Ixus 70 and Nikon D200 cameras are respectively
set at H0 and H1. All available JPEG images of each camera
model are used in this experiment. The reference camera pa-
rameters are estimated as discussed above. The Figure 7 shows
the detection performance of the GLRTs δ̂?1 and δ̂?2 for 1024
and 4096 coefficients extracted randomly at frequency (8, 8) of
natural JPEG images taken by Canon Ixus 70 and Nikon D200
camera models. We can note a similar behavior to the detection
performance on simulated database. Besides, there is a small
loss of power between the two GLRTs because different esti-
mates (ĉk,1, d̂k,1) used in the design of the GLRT δ̂?2 are still in-

fluenced by image content. Nevertheless, this loss of power also
decreases when the number of coefficients increases. Besides,
Figure 8 illustrates detection performance of the GLRT δ̂?2 for
4096 coefficients randomly extracted at different frequencies. It
can be noted that the detection performance decreases with the
reverse zig-zag order.

Meanwhile, the Figure 9 shows the comparison between the
theoretical and empirical false alarm probability, which are
plotted as a function of decision threshold τ. The two proposed
GLRTs δ̂?1 and δ̂?2 show an ability of guaranteeing a prescribed
false alarm rate, even though there is a slight difference in some
cases (typically α0 ≤ 10−3) due to the influence of image con-
tent and the inaccuracy of the CLT for modeling tails.

6.3. Detection Performance on a Large Image Database

Experiments are then conducted on a large database to verify
the efficiency of the proposed approach. The public Dresden
image database [32] is chosen in our experiments. Technical
specifications of the cameras are shown in Table 1, see more
details in [32]. The database covers different devices per cam-
era model, different imaged scenes, different camera settings
and different environmental conditions. All images are acquired
with the highest available JPEG quality setting and maximum
available resolution. For each camera model, the set contains
50 images per camera model for estimation of reference cam-
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Tested images
Cn2 N1 Pe F Ro K N3 N2 Pr Ri S Avg.

H0

Cn2 100 * * * * * * * * * *
N1 * 98.92 * * * * * * * * *
Pe * * 100 * * * * * * * *
F * * * 73.81 * * * * * * *

Ro * * * * 99.49 * * * * * *
K * * * * * 99.19 * * * * *
N3 * * * * * * 100 * * * *
N2 * * * * * * * 98.92 * * *
Pr * * * * * * * * 96.65 * *
Ri * * * * * * * * * 100 *
S * * * * * * * * * * 100

96.99

Table 4: Detection performance of PRNU-based detector [7]

era parameters and 100 images per device for testing, which are
randomly selected from the Dresden database.

Firstly, the GLRT δ̂?2 is used to verify whether a given im-
age is acquired by the camera model of interest. The decision
threshold τ̂?2 is given by the Theorem 2 corresponding to the
false alarm rate α0 = 10−5. If the normalized GLR Λ̂?

2 (Z) is
smaller than the decision threshold τ̂?2 , the hypothesisH0 is ac-
cepted, i.e. the given image is taken from the camera model of
interest. On the contrary, the hypothesis H1 is accepted. It is
proposed to use the last 21 high frequencies for the test. The
detection performance of the test δ̂?2 is shown in Table 2. In this
table, each camera model is considered as hypothesisH0 (row)
and all images (column) are tested againstH0. The values in the
table indicate the percentage of images that are detected taken
by the camera model H0. The table in this paper is not used in
the same way as in the classification in which the sum for each
class yields 100%. The inspected image is brought into the bi-
nary testing of the known camera modelH0 against the others,
thus the sum of a class may not yield 100%. It could lead to a
scenario that an image is declared taken by at least two camera
models. It can be noted from Table 2 that the incorrect detection
in some groups of camera models, such as (C,N1,Pe), (F,Ro),
and (K,N3), is important. This may be justified due to a simi-
larity in JPEG compression scheme used in the camera. To deal
with this scenario, a second testing round involves performing
the GLRT δ̂?1 on the camera models of conflict. The detection
performance of the test δ̂?1 is shown in Table 5. The images are
almost correctly classified. It should be noted that the GLRT δ̂?1
aims to give a decision rule between two different known cam-
era models, thus the experiment on the diagonal of Table 5 is
not performed. This paper also presents the SVM-based detec-
tor for comparison, which has been already performed in [32]
on the Dresden database using 46 different features to capture
characteristics of different camera components of a digital cam-
era. The detection performance of this SVM-based detector is
shown in Table 3. The proposed detector δ̂?2 is slightly equiv-
alent to the SVM-based detector in terms of average correct
detection performance but the misclassification of the former is
more severe. The PRNU-based detector [7] is also performed in
this experiment. This PRNU-based detector is only conducted

H1

Cn2 N1 Pe F Ro K N3

H0

Cn2 - 0 3.52 - - - -
N1 0 - 3.13 - - - -
Pe 0 0 - - - - -
F - - - - 0 - -

Ro - - - 2.12 - - -
K - - - - - - 0

N3 - - - - - 0 -

Table 5: Detection performance of proposed detector δ̂?1

on one device per model. Its detection performance is shown in
Table 4. Overall, the two proposed detectors provide an equiva-
lent detection performance compared with the other ones in the
literature, but the latter can not allow to guarantee a prescribed
false alarm probability like the proposed detectors.

Remark 1. The present paper proposes to exploit the state-of-
the-ar model of DCT coefficients provided in [23]. This model
is not only more accurate than prior-art models in the literature,
but also is the only one that is mathematically justified based on
a statistical analysis of images’ properties according to the im-
age processing pipeline, as provided in [23]. Therefore, relying
on the proposed model allows us to capture accurately statis-
tics of DCT coefficients as well as to analyze camera fingerprint
that can be exploited for camera model identification.

7. Conclusion

The goal of this paper is to design a statistical test for cam-
era model identification from JPEG images within hypothesis
testing framework. The approach is based on the state-of-the-
art model of DCT coefficients to capture their statistical dif-
ference, which jointly results from different sensor noises and
in-camera processing algorithms. The parameters (c, d) charac-
terizing the simplistic linear relation between α and β−1, which
are two parameters of the DCT coefficient model, are proposed
to be exploited as camera fingerprint for camera model identifi-
cation. Based on the parametric model of DCT coefficients, this
paper studies the most powerful LRT and proposes two GLRTs
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that can be straightforwardly applied in practice. The strength
of the proposed approach is that statistical performance of the
tests can be analytically established as well as they can warrant
a prescribed false alarm rate while ensuring a high detection
performance.
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Appendix A. Relation between the Parameters (ã, b̃, γ)
and (αp,q, βp,q)

Given an arbitrary image Z, the DCT operation is performed
in each 8 × 8 block of Z as follows

Ip,q =
1
4

TpTq

7∑
m=0

7∑
n=0

zm,n

× cos
( (2m + 1)pπ

16

)
cos

( (2n + 1)qπ
16

)
, (A.1)

where zm,n denotes a pixel within a 8× 8 block of Z, 0 ≤ m ≤ 7,
0 ≤ n ≤ 7 and Ip,q denotes the two-dimensional DCT coefficient
and

Tp =

 1
√

2
for p = 0

1 for p > 0.
(A.2)

For the sake of simplification, it is assumed that the pixels are
independent and identically distributed within each 8×8 block.
By taking variance on the both sides of the equation (A.1), it
follows that

Var
[
Ip,q

]
= Var

[
zm,n

]
(A.3)

Var
[
I2

p,q

]
= S p,qVar

[
z2

m,n

]
+

(
1 − S p,q

)
Var2[zm,n

]
, (A.4)

with

S p,q =
1
44 T 4

pT 4
q

7∑
m=0

7∑
n=0

cos4
( (2m + 1)pπ

16

)
cos4

( (2n + 1)qπ
16

)
. (A.5)

In fact, the proposed model of DCT coefficients (3) is based
on the doubly stochastic model given in [33] that takes into ac-
count the statistics of DCT coefficients in a block whose vari-
ance is constant and the variability of block variance in a natural
image. Given a constant block variance σ2

b, the AC coefficient
I may be approximately distributed as zero-mean Gaussian in
virtue of the CLT. Besides, the block variance σ2

b can be ap-
proximately modeled by the Gamma distribution G(α, β). As

the pdf of I is symmetric, the odd moments vanish. Based on
the law of total expectation, the short calculation shows that

Var
[
Ip,q

]
= EIp,q

[
I2

p,q

]
= Eσ2

b

[
EIp,q |σ

2
b

[
I2

p,q|σ
2
b

]]
= Eσ2

b

[
σ2

b

]
= αp,qβp,q (A.6)

Var
[
I2

p,q
]

= E
[
I4

p,q

]
− E2

[
I2

p,q

]
= Eσ2

b

[
3σ4

b

]
− α2

p,qβ
2
p,q

= 2α2
p,qβ

2
p,q + 3αp,qβ

2
p,q. (A.7)

On the other hand, it follows from [20] that

Var[zm,n] =
1
γ2 µ

2−2γ
zm,n (ãµγzm,n + b̃) (A.8)

Var
[
z2

m,n
]

=
4
γ2 µ

4−2γ
zm,n (ãµγzm,n + b̃). (A.9)

Consequently, one derives that

αp,qβp,q =
1
γ2 µ

2−2γ
zm,n (ãµγzm,n + b̃) (A.10)(

S p,q + 1
)
αp,qβp,q + 3βp,q = 4S p,qµ

2
zm,n
. (A.11)

Resolving this system of equations, the relation between αp,q

and β−1
p,q is given as

β−1
p,q =

(S p,q + 1)αp,q + 3

4b̃
2
γ S p,q

×

(√
γ2αp,qb̃

(S p,q + 1)αp,q + 3
4S p,q

+
ã2

4
−

ã
2

) 2
γ

. (A.12)

This relation is too complicated to exploit. Therefore, it is pro-
posed to employ the polynomial expansion and only keep the
first two terms

β−1
p,q = cp,q αp,q + dp,q, (A.13)

where the parameters (cp,q, dp,q) depend on the parameters
(ã, b̃, γ). Numerical experiments show that this simplified equa-
tion sufficiently characterizes the relation between the parame-
ters (ã, b̃, γ) and (αp,q, βp,q) (see Figure 1 and Figure 2).

Appendix B. Laplace’s Approximation of DCT Coefficient
Model

Let us briefly describe the idea behind the Laplace’s approx-
imation [29]. The Laplace’s method aims to provide an approx-
imation for integrals of the form

I =

∫
exp

(
− g(t)

)
dt, (B.1)

when the function g(t) reaches the global minimum at t∗. By
using the Taylor expansion of the function g(t) at t∗, we have

g(t) = g(t∗) +
g′′(t∗)

2
(t − t∗)2 + o((t − t∗)2), (B.2)

where g′′(t) denotes the second derivative of the function g(t).
Therefore, the integral I can be approximated as

I ≈ exp
(
− g(t∗)

) ∫
exp

[
−

g′′(t∗)
2

(t − t∗)2
]

dt. (B.3)
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This integral takes the form of Gaussian integral. We derive

I ≈

√
2π
|g′′(t∗)|

exp
(
− g(t∗)

)
. (B.4)

A generalization has been made in [30] with an arbitrary func-
tion h(t)

I =

∫
h(t) exp

(
− g(t)

)
dt ≈

√
2π
|g′′(t∗)|

h(t∗) exp
(
− g(t∗)

)
.

(B.5)
As described in [23], the DCT coefficient model fI(u) is

rewritten as follows

fI(u) =
1

√
2πβαΓ(α)

∫ ∞

0
h(t) exp

(
− g(t∗)

)
dt (B.6)

where

g(t) =
t
β

+
u2

2t
and h(t) = tα−

3
2 . (B.7)

The function g(t) reaches the minimum at t∗ = |u|
√

β
2 and its

second derivative is defined by g′′(t) = u2

t3 . Consequently, the
function fI(u) can be approximated as

fI(u) ≈
|u|α−1

(2β)
α
2 Γ(α)

exp

−|u|
√

2
β

 . (B.8)

It can be noted that this approximating model is a special case
of the GΓ model [34] when γ = 1 (the variable γ is given in [34,
Eq. (6)]).

Appendix C. Expectation and Variance of the LR Λ(Ik,i)
under HypothesisH j

It can be noted from (15) that it is necessary to calculate the
expectation and variance of the random variable |I|. Given a
constant variance σ2

b, the random variable I is normally dis-
tributed with zero-mean and variance σ2

b. Thus, the random
variable |I| follows the half-Normal distribution [35]. There-
fore, we obtain

EI|σ2
b

[
|I| | σ2

b

]
=

√
2
π
σb. (C.1)

Based on the law of total expectation, the mathematical expec-
tation of |I| is given by

EI

[
|I|

]
= Eσ2

b

[
EI|σ2

b

[
|I| | σ2

b

]]
=

√
2
π
Eσ2

b
[σb]

=

√
2
π
β

1
2
Γ(α + 1

2 )
Γ(α)

. (C.2)

Besides, the variance of |I| is given by

VarI
[
|I|

]
= EI

[
|I|2

]
− E2

I

[
|I|

]
= αβ −

2β
π

Γ2(α + 1
2 )

Γ2(α)
. (C.3)

Consequently, the expectation and variance of the LR Λ(Ik,i)
under hypothesisH j can be defined by

EH j

[
Λ(Ik,i)

]
=
αk

2
log

β−1
k,1

β−1
k,0

−
2
√
π
β

1
2
k, j

Γ(αk + 1
2 )

Γ(αk)

(√
β−1

k,1 −

√
β−1

k,0

)
(C.4)

VarH j

[
Λ(Ik,i)

]
= 2

(√
β−1

k,1 −

√
β−1

k,0

)2

×
(
αkβk, j −

2βk, j

π

Γ2(αk + 1
2 )

Γ2(αk)

)
. (C.5)

Appendix D. Asymptotic Expectation and Variance of the
GLR Λ̂2(Ik,i) under HypothesisH j

It is assumed that the variance of the estimate α̂k is negligible
when the number of coefficients Nb is very large. Thus it is pro-
posed to treat the estimate α̂k as a constant αk. Besides, since
the estimates (ĉk,1, d̂k,1) are consistent, the asymptotic mathe-
matical expectation of the GLR Λ̂2(Ik,i) under hypothesis H j

does not change, i.e. EH j

[
Λ̂2(Ik,i)

]
= mk, j.

Meanwhile, the variance of the GLR Λ̂2(Ik,i) needs to take
into account the variability of the estimates (ĉk,1, d̂k,1). Based
on the definitions of mathematical expectation and variance, we
have

EH j

[
ĉk,1α̂k + d̂k,1

]
= β−1

k,1 (D.1)

VarH j

[
ĉk,1α̂k + d̂k,1

]
= α2

kσ
2
ck,1

+ σ2
dk,1

+ 2αkσck,1dk,1 . (D.2)

Subsequently, from the Delta method [15, theorem 11.2.14], we
derive that

VarH j

[
log

ĉk,1α̂k + d̂k,1

ck,0α̂k + dk,0

]
= VarH j

[
log

(
ĉk,1α̂k + d̂k,1

)]
=

VarH j

[
ĉk,1α̂k + d̂k,1

]
E2
H j

[
ĉk,1α̂k + d̂k,1

]
= β2

k,1

(
α2

kσ
2
ck,1

+ σ2
dk,1

+ 2αkσck,1dk,1

)
, (D.3)

and

VarH j

[√
ĉk,1α̂k + d̂k,1 −

√
ck,0α̂k + dk,0

]
= VarH j

[√
ĉk,1α̂k + d̂k,1

]
=

VarH j

[
ĉk,1α̂k + d̂k,1

]
4EH j

[
ĉk,1α̂k + d̂k,1

]
=
βk,1

4

(
α2

kσ
2
ck,1

+ σ2
dk,1

+ 2αkσck,1dk,1

)
. (D.4)

Finally, the asymptotic variance of the GLR Λ̂2(Ik,i) can be
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given as

VarH j

[
Λ̂2(Ik,i)

]
=
α2

k

4
VarH j

[
log

ĉk,1α̂k + d̂k,1

ck,0α̂k + dk,0

]
+ 2VarH j

[√
ĉk,1α̂k + d̂k,1 −

√
ck,0α̂k + dk,0

]
EH j

[
|I|2

]
+ 2E2

H j
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]
VarH j

[
|I|2
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=
β2

k,1αk(αk + 2)

4
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2
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+ 2
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2 )
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