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Abstract—The goal of this paper is to propose a statistical
model of quantized Discrete Cosine Transform (DCT) coefficients.
It relies on a rigorous mathematical framework of studying the
image processing pipeline of a typical digital camera instead
of fitting the empirical distribution with a variety of popular
models proposed in the literature. To highlight the accuracy
of the proposed model, the paper uses it for the detection of
hidden information in JPEG images. The paper proposes and
designs a statistical test for the steganalysis of Jsteg algorithm.
A ML estimator for embedding rate is also derived based on the
proposed model of DCT coefficients. Numerical results on a large
database also emphasize the accuracy of the proposed model.

Index Terms—Digital Image Model, Discrete Cosine Trans-
form, JPEG Compression, Steganalysis, Hypothesis Testing.

I. INTRODUCTION

D IGITAL image processing has remarkably developed
during the past decades with dramatic advancement in

computing and network technologies [1]. Many applications
of this field involve the storage and transmission of digi-
tal images. The JPEG compression has gained widespread
popularity for image storage and transmission because of its
standardization and cost effectiveness. This image format has
been extensively studied in various domains such as image
segmentation [2], image coding [3], image restoration or re-
construction [4], pattern recognition [5], digital watermarking
[6], steganography [7], and image tampering detection [8].
Such applications require the knowledge of a model of digital
images in JPEG format. This paper aims to propose a novel
statistical model of JPEG images and applies this model for
the hidden information detection problem to emphasize its
accuracy.
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A. State of the Art

The model of Discrete Cosine Transform (DCT) coeffi-
cients has been considerably studied in the literature. Many
researches focus on comparing the empirical data with a
variety of popular statistical distributions by conducting the
goodness-of-fit (GOF) test, e.g. the Kolmogorov-Smirnov (KS)
or χ2 test. Firstly, the Gaussian distribution for the DCT
coefficients was conjectured in [1]. The Laplacian distribution
was verified in [9] by performing the KS test. This Laplacian
distribution remains a dominant choice in image processing
because of its simplicity and relative accuracy. Other possible
distributions such as Gaussian mixture [10] and Cauchy [11]
were also proposed. In order to model the DCT coefficients
more accurately, the previous distributions were extended to
the generalized versions consisting of the Generalized Gaus-
sian [12] and the Generalized Gamma (GΓ) [13] distributions.
Two main drawbacks of those researches are that the choice
of distribution for the DCT coefficients is not based on a
mathematical analysis and the empirical use of GOF test on
a few standard images. Thus, this can not guarantee a good
fitting of the chosen model to a wide range of images, which
leads to a lack of robustness of the model.

The first mathematical analysis given in [14] relied on
the doubly stochastic model due to the variability of block
variance. By considering that the block variance follows the
exponential or the half-Gaussian distribution, the Laplacian
model was finally obtained for DCT coefficients [14]. This
analysis was incomplete due to the lack of mathematical
justification for the block variance model. Besides, a collection
of models was proposed for block variance in [15] without
justification. On the contrary, it was established in our previous
work [16] that the block variance can be approximately
modeled by the Gamma distribution. Then, following the
same framework proposed in [14], a statistical model of DCT
coefficients, which outperforms the Laplacian or the GΓ model
was established; see details in [16].

The JPEG image, which relies on the DCT operation,
has been exploited in many applications. Recently, the JPEG
format has received the most attention from law enforcement
agencies and academic researchers. Several steganographic
methods embed a secret message within a JPEG compressed
image and create a so-called stego-image. The stego-image is
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then transmitted to the receiver via an insecure channel without
raising suspicion of an adversary. The first steganographic
algorithm for JPEG images was Jsteg [17]. The Jsteg is based
on the well-known embedding method called Least Significant
Bit (LSB) replacement. It replaces the LSB of quantized DCT
coefficients that differ from 0 and 1 with bits of message.
Despite of its relative insecurity, the Jsteg algorithm remains
popular in downloadable steganography softwares due to its
simplicity and high embedding payload. However, the ste-
ganalysis of Jsteg algorithm still remains an open problem. In
spite of lots of existing methods proposed for the steganalysis
of Jsteg algorithm in the literature, an improvement of the
existing steganalysis methods is still desirable.

Despite the fact that the secret content is not visually
revealed, the modification of cover image changes its statistical
properties and creates artifacts that can be detected statistically.
If one possesses a model that perfectly captures statistical
properties of cover image, the insertion is detectable following
the information theoretic sense [18] or hypothesis testing
theory [19]. Therefore, the steganalysis of Jsteg algorithm
requires a very accurate model of DCT coefficients, which
allows to detect any small change in the cover image due to
the insertion of secret message. This model-based approach
was exploited in [20] for the steganalysis of Jsteg using
the Generalized Cauchy distribution of DCT coefficients.
The quantized Laplacian model-based steganalysis was also
presented in [21]. However, a considerable loss of power
was revealed since the Laplacian model was not sufficiently
accurate to model DCT coefficients. Other approaches involve
structural detectors [22], [23], WS detectors [24], and universal
blind detectors [25].

In an operational context, for instance a steganalysis tool
for law enforcement or intelligence agencies, the design
of an accurate detector might not be sufficient. The most
important and challenging problem is to provide a detector
with analytically predictable results in order to guarantee a
prescribed false alarm probability. The existing detectors can
provide overall acceptable detection performance. However,
their statistical performance remains analytically unestablished
in practice. It is only evaluated on a large database. Besides, as
in all applications of machine learning, the main difficulties
for blind detectors are the choice of appropriate feature set
and the analytic establishment of detection performance. The
latter remains an open problem in the framework of statistical
learning [26].

B. Contributions and Organization of the Paper

The contribution of this paper is twofold:
1) The paper establishes a mathematical framework of

studying statistical distribution of quantized DCT co-
efficients under some mild assumptions: RAW pixels
are statistically independent, the pixels are identically
distributed in each 8 × 8 block, and the correlation
between DCT coefficients is negligible. The study is
carried out by following the image processing pipeline of
a digital camera. The estimates of the model parameters
are given by the method of Maximum Likelihood (ML).

Fig. 1: Image processing pipeline of a digital camera.

Numerical experiments show that the proposed model
is more accurate than the recent empirical ones in the
literature (Laplacian and Generalized Gamma model).

2) To highlight the efficiency of proposed model, the paper
exploits it for the steganalysis of Jsteg algorithm. By for-
mulating the hidden information detection as a hypoth-
esis testing problem, the paper designs a most powerful
Likelihood Ratio Test (LRT) assuming that all model
parameters are known. The statistical performance of
the LRT is analytically established. The test satisfies
the Constant False Alarm Rate (CFAR) property, i.e. the
threshold is set independently of the image content, and
maximizes the detection probability. A ML estimator for
embedding rate is also derived based on the proposed
model of DCT coefficients.

The paper is organized as follows. Section II presents the
image processing pipeline of a digital camera. Section III
proposes the statistical distribution of quantized DCT coeffi-
cients. Section IV provides ML estimates of model parameters.
Section V applies the proposed model in the steganalysis of
Jsteg algorithm. Section VI presents numerical results of the
comparison between the proposed model and the state-of-the-
art GΓ model and the popular Laplacian model based on the
χ2 GOF test. The performance obtained from the LRT based
on these three models to detect hidden messages using the
Jsteg algorithm is also studied on a large database of JPEG
images. Finally, Section VII concludes the paper.

II. IMAGE PROCESSING PIPELINE OF A DIGITAL CAMERA

The image processing pipeline of a digital camera is shown
in Fig. 1. The image processing pipeline involves the steps by
which an image is rendered from the measured light intensity
of each pixel. Each stage affects the final output image. It
should be noted that the sequence of operations differs from
manufacturer to manufacturer. The reader is referred to [27],
[28] for the general structure of a digital camera and to [29]
for the image processing pipeline.

Usually, a digital camera records an image by using the
photosites of an image sensor. These photosites enable to
convert light energy to electrical energy. The output signals of
the image sensor are analog. These signals are then converted
to digital signals by an analog-to-digital (A/D) converter
inside the camera. The RAW image is obtained at this stage.
Depending on the analog-to-digital circuit of the camera, the
RAW image is recorded with 12, 14 or even 16 bits. One key
advantage is that the RAW image contains exactly information
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recorded by the image sensor and it has not yet undergone
post-acquisition operations. This offers more flexibility for
further adjustments.

Since the photosites are insensitive to color, the digital
camera samples the color spectrum using the Color Filter
Array (CFA) such that each pixel samples only one color
band usually red, green or blue. Although the use of the
CFA allows to reduce the cost of the camera, this requires
to estimate the missing color values at each pixel location in
order to render a full-color image. This estimation process is
commonly referred as CFA demosaicing; see [30] for a review
on some demosaicing methods. Among available demosaicing
methods, the bilinear interpolation might be the simplest and
most computationally efficient one. It estimates missing color
values with weighted averages of their neighboring values. Let
Z be a matrix representing the RAW image of size M × N
whereas R, G and B denote respectively the red, green and
blue channels of the image. A sub-image of color channel
c = {R,G,B} extracted from the RAW image Z is denoted
by Zc. The bilinear interpolation can be written as a linear
filtering

ZcDM = Hc ~ Zc, (1)

where Hc is the linear filter for the color channel c, ~ denotes
the 2-D convolution and ZcDM denotes the demosaiced image
of the color channel c.

Besides, the RAW image requires to undergo the white
balance process [29]. The white balance aims to compensate
the color shifts caused by different color temperatures of light
sources so that a captured white object is rendered white in
the image. It is assumed that the white balance is implemented
after the demosaicing process. One of popular white balance
algorithms is the Gray World [29]. This algorithm relies on
the assumption that the average value of three color channels
will average to a common gray value

θ
R

DM = θ
G

DM = θ
B

DM , (2)

where θ
c

DM denotes the average intensity of the demosaiced
image ZcDM . In this scheme, the white-balanced image of
color channel c, denoted ZcWB , is given by

ZcWB = λc × ZcDM with λc =
θ
G

DM

θ
c

DM

. (3)

It is worth noting that other white-balancing algorithms may
be also modeled as a weighting of color channels but using
different weight factors. Another fundamental post-acquisition
process is γ-correction [29], which involves a non-linear input-
output mapping. This process is necessary for contrast display
purposes. It is defined by the following power-law expression

ZcGM = |ZcWB |
1
γ , (4)

where | · | denotes the absolute value and γ is the correction
factor (typically, γ = 2.2). After going through these post-
acquisition processes, a full-color image, referred as TIFF
image in this paper, with higher quality is rendered.

In order to be stored or transmitted easily on telecom-
munication networks, the image has to be compressed to
reduce its size. The JPEG standard [31] is the most popular

compression technology in digital computing. The use of the
JPEG compression is a balancing act between storage size and
image quality. An image which is compressed with a high
degree of compression requires little storage space, but it will
probably be reconstructed with a poor quality.

The JPEG compression scheme works in the different color
space, typically Y CbCr color space, rather than the RGB
color space. The Y channel represents the brightness of a
pixel, and the Cb and Cr channels represent the chrominance.
Therefore, prior to the JPEG compression, the TIFF image is
converted from the RGB color space into the Y CbCr color
space using a linear transformation. In the JPEG compression
scheme, each channel Y , Cb and Cr is processed separately.
The index of the channel Y , Cb, Cr can be omitted for the
sake of simplicity. Let Z̃ be a matrix representing the sub-
image of the channel Y , Cb, Cr. The JPEG compression
involves two key steps : the DCT and the quantization. The
DCT operation is performed in each 8×8 block of Z̃ as follows

Ip,q =
1

4
TpTq

7∑
m=0

7∑
n=0

z̃m,n

× cos

(
(2m+ 1)pπ

16

)
cos

(
(2n+ 1)qπ

16

)
, (5)

where z̃m,n denotes a pixel within a 8 × 8 block of Z̃, 0 ≤
m ≤ 7, 0 ≤ n ≤ 7 and Ip,q denotes the two-dimensional DCT
coefficient and

Tp =

{
1√
2

for p = 0

1 for p > 0.
(6)

The term Tq can be easily derived from Tp as well. The
coefficient at location (0, 0), called the Direct Current (DC)
coefficient, represents the mean value of pixels in the 8 × 8
block. The remaining 63 coefficients are called the Alternating
Current (AC) coefficients.

Then, the DCT coefficients have to undergo the quantization
operation. It is carried out by simply dividing each coefficient
by the corresponding quantization step, and then rounding to
the nearest integer

Vp,q = round

(
Ip,q
∆p,q

)
, (7)

where Vp,q is quantized DCT coefficient, ∆p,q denotes an
element of the 8×8 quantization matrix and round denotes the
rounding operation. The goal of the quantization operation is
to discard information which is not visually significant [31].
It is the principal lossy operation in the JPEG compression
technology. It should be noted that the final processing step
is entropy coding, which is a form of lossless data compres-
sion. It arranges quantized DCT coefficients into the zig-zag
sequence and then employs the run-length encoding (RLE)
algorithm and Huffman coding. Since the entropy coding is
perfectly reversible, the statistical distribution of quantized
DCT coefficients does not change in this step. Therefore, the
entropy coding is not considered in this paper.



4 IEEE TRANSACTION ON IMAGE PROCESSING (SUBMITTED VERSION, OCT. 2013)

III. STATISTICAL STUDY OF QUANTIZED AC
COEFFICIENTS

A. Impact of Post-Acquisition Processes

This paper only focuses on the distribution of quantized
AC coefficients. As DC coefficient represents the mean value
of pixels within each 8 × 8 block, the distribution of DC
coefficient can not be straightforwardly derived due to the
heterogeneity in a natural image. For the sake of clarity, the
index of pixel and AC coefficients is omitted in this section.

The RAW image can be modeled by considering the noises
that contribute to the degradation of the captured image during
the image acquisition process [16], [28], [32]. In fact, the
photon shot noise and dark current are modeled as Poissonian
random variables whereas other electronic noises are modeled
as a zero-mean Gaussian one. For the sake of simplification,
the normal approximation of the Poisson distribution may
be exploited because of a large number of incident photons.
Finally, the RAW pixel zc follows the Gaussian distribution

zc ∼ N (θc, sc), (8)

where θc is an element of the mean matrix Θc and sc is
an element the variance matrix Σc of Zc. As discussed in
[16], [32], the Gaussian model is a suitable approximation of a
RAW image acquired by a digital imaging sensor. It should be
noted that the RAW image has to go through the quantization
process in the image acquisition chain. The quantization step
is very small compared with noise in the RAW image as it
is often coded with B ∈ {12, 14, 16} bits. Therefore, the
quantization at this stage supposedly has no impact on the
statistical distribution of RAW pixels.

Since the bilinear interpolation and Gray World algorithm
are linear operations, it follows from (1) and (3) that, after
those two processes the pixel zcWB also follows the Gaussian
distribution

zcWB ∼ N
(
θcWB , s

c
WB

)
, (9)

where Θc
WB = λc ·Hc~Θc and Σc

WB = (λc)2 ·Hc ·Hc~Σc.
Here, (·) is the element-wise multiplication operator. By ap-
plying the change of variables theorem, the probability density
function (pdf) of the pixel zcGM is given by

fzcGM (x) =
γxγ−1√
2πscWB

[
exp

(
− (xγ − θcWB)2

2scWB

)
+ exp

(
− (xγ + θcWB)2

2scWB

)]
, x ∈ R+, (10)

where fX(x) denotes the pdf of a random variable X .

B. Doubly Stochastic Model of AC Coefficients

As mentioned above, the TIFF image needs to be converted
into the color space Y CbCr. Since this transformation is
linear, the distribution of each channel Y , Cb, Cr does not
differ fundamentally from (10). It can be easily calculated at
the expense of much complicated notations. For the sake of
clarity, the distribution (10) is hence considered. In order to
model AC coefficients, the variability of block variance due
to the heterogeneity in the image is taken into account. Based

on the doubly stochastic model [14], the pdf of AC coefficient
I is given by

fI(x) =

∫ ∞
0

fI|σ2(x|t)fσ2(t)dt x ∈ R, (11)

where σ2 denotes the block variance. In this model, the block
variance σ2 is itself a random variable. It is assumed that the
pixels z̃m,n are identically distributed within a 8 × 8 block
[14]. Given a constant block variance σ2, the AC coefficient
I may be approximately distributed as zero-mean Gaussian in
virtue of Central Limit Theorem (CLT) for correlated random
variables [33]

fI|σ2(x|t) =
1√
2πt

exp
(
− x2

2t

)
. (12)

The rate of convergence in the CLT for a sequence of n
dependent random variables is roughly studied; see [34], [35]
and references therein. If the pixels within a block are weakly
spatially correlated, it is expected that the rate of convergence
is of the order of n−

1
2 log n. A small error of approximation

evidently exists with only 64 random variables. Nevertheless,
the fact of ”Gaussianization” is important because it allows
to simplify the study of the sum of 64 random variables of
which pdf (10) is rather complicated.

The equations (11) and (12) highlight the crucial importance
of studying the distribution of block variance σ2. In fact, the
block variance σ2 can be defined by

σ2 =
1

63

7∑
m=0

7∑
n=0

(
z̃m,n − z̃

)2
, (13)

where z̃ is the average of pixels within a 8× 8 block

z̃ =
1

64

7∑
m=0

7∑
n=0

z̃m,n. (14)

It is important to note that z̃ is also a random variable. It
follows that

z̃m,n − z̃ =
1

64

7∑
m′=0

7∑
n′=0

(
z̃m,n − z̃m′,n′

)
. (15)

By invoking again the CLT [33], the distribution of z̃m,n − z̃
approaches to the zero-mean Gaussian distribution. It should
be noted that the square of a standard Gaussian random
variable follows the chi-square distribution of one degree of
freedom. Moreover, a chi-square random variable scaled by
a constant follows the Gamma distribution. Accordingly, one
derives that

1

63

(
z̃m,n − z̃

)2 D−→ G
(1

2
, νm,n

)
, (16)

where G(·) denotes the Gamma distribution, νm,n is a scale pa-
rameter depending on the variance of z̃m,n−z̃, and the notation
D−→ denotes the convergence in distribution. Consequently,

the block variance σ2 is considered as a sum of correlated
Gamma random variables. The exact distribution of the sum
of correlated Gamma variables was analytically established
in [36]. However, this exact distribution is too complicated
for establishing the pdf fI (11). Besides, it follows from [36]
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Fig. 2: Comparison between the Laplacian, GΓ and proposed
model of DCT coefficients.

that the Moment-Generating Function (MGF) of σ2 can be
expressed as

Mσ2(t) =
[

det
(
I64 − tD ·Co

)]− 1
2

, (17)

where det(·) denotes the determinant operator, I64 is the 64×
64 identity matrix, D is the 64 × 64 diagonal matrix with
the entries {νm,n}, and Co is the 64× 64 covariance matrix
defined by

Co =


1

√
ρ1,2 · · · √ρ1,64√

ρ2,1 1 · √
ρ2,64

· · · ·√
ρ64,1 · · · · · · 1.

 (18)

Here, ρi,j is the correlation coefficient between two pixels
within a block. Denoting {λi}64

i=1 the eigenvalues of the matrix
D ·Co, the MGF Ms2(t) is rewritten as

Ms2(t) =

64∏
i=1

(
1− tλi

)− 1
2 , (19)

which has a similar form as the MGF of the sum of indepen-
dent Gamma variables G

(
1
2 , λi

)
, i = {1, . . . , 64}. The moment

matching method is used to approximate the distribution of the
sum of independent Gamma variables G

(
1
2 , λi

)
by a Gamma

distribution G(η, ν). By matching the two first moments of
two distributions, the parameters (η, ν) are given by

η =

(∑64
i=1 λi

)2
2
∑64
i=1 λ

2
i

(20)

ν =

∑64
i=1 λ

2
i∑64

i=1 λi
. (21)

As a result, the block variance σ2 can be approximately
modeled by the Gamma distribution G(η, ν)

fσ2(t) =
tη−1

νηΓ(ν)
exp

(
− t
ν

)
, (22)

where η is a positive shape parameter, ν is a positive scale
parameter, and Γ(·) denotes the gamma function.

The Gamma distribution of block variance is used to estab-
lish the model of AC coefficient I . It follows from (11), (12),
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Fig. 3: Comparison between the quantized Laplacian, quan-
tized GΓ and proposed model for quantized AC coefficient.

and (22) that

fI(x) =
1√

2πνηΓ(η)

∫ ∞
0

exp
(
− t

ν
− x2

2t

)
tη−

3
2 dt. (23)

From [37], the integral representation of the modified Bessel
Kν(·) yields to

fI(x) =

√
2

π

(
|x|
√

ν
2

)η− 1
2

νηΓ(η)
Kη− 1

2

(
|x|
√

2

ν

)
. (24)

The Fig. 2 illustrates the empirical distribution of the third
DCT coefficient, extracted from the image in the BOSS Base
[38], and the proposed model compared with the Laplacian
and GΓ model.

Based on the law of total expectation, the variance of the
AC coefficient I is given by

VarI
[
I
]

= EI
[
I2
]

= Eσ2

[
EI|σ2

[
I2|σ2

]]
= Eσ2

[
σ2
]

= ην

(25)
where EX and VarX represents the mathematical expectation
and variance with respect to a random variable X . Similarly,
the kurtosis coefficient of I is defined by

γ2 =
EI
[
I4
]

Var2
I

[
I
] =

Eσ2

[
3σ4
]

E2
σ2

[
σ2
] = 3

ην2(η + 1)

η2ν2
= 3
(

1 +
1

η

)
.

(26)
The proposed model includes the Laplacian and Gaussian as
special cases. In fact, as η → ∞, then γ2 → 3. The AC
coefficient I tends to be distributed as Gaussian variable.
Similarly, as η = 1, γ2 = 6, then the Gamma distribution
of block variance reduces back to the exponential distribution,
the Laplacian model for AC coefficient I is obtained [14].
The proposed model of I outperforms the Laplacian, yet at the
expense of more complex expressions and extra computational
cost.

C. Impact of Quantization : Final Model of Quantized AC
coefficients

Let PV (l), l ∈ Z, be the probability mass function (pmf)
of the quantized AC coefficient V with the corresponding
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quantization step ∆. The uniform quantization operation with
step ∆ can be written as follows

V = l⇐⇒ I ∈
[
∆
(
l − 1

2

)
,∆
(
l +

1

2

)[
. (27)

Therefore, the pmf PV (l) is defined by

PV (l) = P
[
V = l

]
=

∫ ∆(l+ 1
2 )

∆(l− 1
2 )

fI(x)dx. (28)

Because the pmf PV (l) is symmetric, it is sufficient to consider
l ≥ 0. Let define the function G(l) as

G(l) =

∫ ∆(l+ 1
2 )

0

fI(x)dx ∀l ∈ Z+. (29)

By changing the variable x = ∆(l+ 1
2 ) · t, a direct calculation

from (24) and (29) yields to

G(l) =

√
2

π

(√
ν
2

)η− 1
2
(

∆(l + 1
2 )
)η+ 1

2

νηΓ(η)

×
∫ 1

0

tη−
1
2Kη− 1

2

[
t ·∆

(
l +

1

2

)√2

ν

]
dt. (30)

It follows from [37] that:

G(l) =
1

2
g(l)

[
Kη− 1

2
(g(l))Lη− 3

2
(g(l))

+Kη− 3
2
(g(l))Lη− 1

2
(g(l))

]
, (31)

where g(l) = ∆(l + 1
2 )
√

2
ν and Lν(·) is the modified Struve

function. Finally, the pmf PV (l) is given by

PV (l) =

{
G
(
|l|
)
−G

(
|l| − 1

)
∀l ∈ Z∗

2G(0) l = 0.
(32)

The Fig. 3 illustrates the empirical data and the proposed
model of quantized AC coefficients, compared with the quan-
tized Laplacian and quantized GΓ model that are detailed in
Appendix A.

The above mathematical framework is based on some
assumptions that may not be realistic. In fact, the image
processing pipeline that goes from the image scene to the final
output (e.g. JPEG image) is complicated and so difficult to
model. This paper does not aim to cover all effects occurred in
the image processing pipeline. Therefore we need to simplify
the reality and make assumptions in order to built a statistical
model for DCT coefficients. The proposed model of DCT
coefficients shows a better fit to a wide range of images than
existing models in the literature (e.g. Laplacian and General-
ized Gamma model); see Fig. 3 and more numerical results
in Section VI. Moreover, the high efficiency of the proposed
model is highlighted when applying in the steganalysis of Jsteg
algorithm to detect a small change in the cover image due to
the insertion of secret message.

IV. MODEL PARAMETER ESTIMATION

For the sake of clarity, from this section, the quantized
DCT coefficients are arranged into 64 vectors of coefficients.
Let Vk = (vk,1, . . . , vk,n)T , k ∈ {1, . . . , 64}, be the vector
of length n representing the k-th quantized DCT coefficient
where vk,i, 1 ≤ i ≤ n, denotes the value of the k-th DCT
coefficient in the block i and UT denotes the transpose of
the matrix U. Accordingly, ∆k denotes the quantization step
associated with Vk.

The above mathematical analysis does not explain the differ-
ence in scale of the distributions across the DCT coefficients.
In fact, in a natural image, the energy tends to be more con-
centrated in the lower frequency than in the higher frequency.
The quantization step ∆k also depends on frequency. The
quantization table is often designed to preserve information
in a low frequency and discard details in a high frequency.
After the quantization process, larger variance is expected in
the low frequency for which the quantization step is smaller.
Therefore, we should treat each frequency separately. The
parameters characterizing the distribution of quantized AC
coefficient Vk are now denoted by (ηk, νk), k = {2, . . . , 64},
with respect to the k-th quantized DCT coefficient.

Obviously, the original image can not be perfectly recon-
structed because of the lossy compression. For a practical use,
the model parameters (ηk, νk) need to be estimated from the
quantized AC coefficients Vk.

A. Method of Moments (MM) Estimates

According to the theory of quantization [39], the effect of
uniform quantization can be modeled by an additive noise that
is uniformly distributed and uncorrelated with the input signal.
The quantized AC coefficient Vk can be given by

Vk =
Ik
∆k

+ εk, εk ∼ U
[
− 1

2
,

1

2

]
, (33)

where U represents the uniform distribution and Ik is the
unquantized AC coefficient. Since the distribution of Ik and
Vk is symmetric, their odd moments vanish. Based on the
definitions of the expectation, the second and fourth moments
of Vk are therefore given by

EVk
[
V 2
k

]
=

1

∆2
k

EIk
[
I2
k

]
+ Eεk

[
ε2k
]

=
ηkνk
∆2
k

+
1

12
(34)

EVk
[
V 4
k

]
=

1

∆4
k

EIk
[
I4
k

]
+

6

∆2
k

EIk
[
I2
k

]
Eεk
[
ε2k
]

+ Eεk
[
ε4k
]

=
3

∆4
k

ηkν
2
k(ηk + 1) +

1

2∆2
k

ηkνk +
1

80
. (35)

It follows that the parameters (ηk, νk) can be expressed as

ηk =

(
EVk

[
V 2
k

]
− 1

12

)2

1
3EVk

[
V 4
k

]
− E2

Vk

[
V 2
k

]
+ 1

360

(36)

νk =
∆2
k

(
EVk

[
V 2
k

]
− 1

12

)
ηk

. (37)
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The MM estimates of (ηk, νk) are then derived as

η̂MM
k =

(
mk,2 − 1

12

)2

1
3mk,4 −m2

k,2 + 1
360

(38)

ν̂MM
k =

∆2
k

(
mk,2 − 1

12

)
η̂MM
k

, (39)

where m̂k,2 and m̂k,4 are the empirical second and fourth
moments of Vk

m̂k,2 =
1

n

n∑
i=1

v2
k,i m̂k,4 =

1

n

n∑
i=1

v4
k,i. (40)

B. ML Estimates

By definition, the ML estimates of (ηk, νk) are defined as
the solution of a maximization problem(

η̂ML
k , ν̂ML

k

)
= arg max

(ηk,νk)

n∑
i=1

logPV
(
vk,i
)
. (41)

The ML estimates
(
η̂ML
k , ν̂ML

k

)
can not be analytically pro-

vided because the maximization problem (41) has no closed-
form solution. It is proposed to resolve the maximization
problem numerically by using the Nelder-Mead optimization
method [40]. The MM estimates

(
η̂MM
k , ν̂MM

k

)
is taken as

initial solution in the optimization algorithm. Even though
the convergence to the global solution can not be ensured
in a practical context, this procedure can be used to obtain a
heuristic solution for ML estimates

(
η̂ML
k , ν̂ML

k

)
. By contrast,

the ML estimates of the parameters of quantized Laplacian and
quantized GΓ model are obtained by taking ML estimates in
[21] and [13], respectively, as initial solution.

V. APPLICATION IN THE STEGANALYSIS OF JSTEG
ALGORITHM

A. Problem Statement

As described above, the Jsteg algorithm is based on the
LSB replacement scheme in the DCT domain. Let C be a
matrix representing the cover image that is composed of 64
vectors of quantized DCT coefficients Ck, k = {1, . . . , 64}.
The pmf of the quantized DCT coefficient Ck is denoted
by Pθk,∆k

characterized by the parameter vector θk and the
corresponding quantization step ∆k. It should be noted that
in our proposed model, θk = (ηk, νk). Let us assume that
M represents the encrypted secret message of length L. In
the Jsteg algorithm, each hidden bit, that is either 0 or 1, is
statistically independent of the cover coefficients. Moreover,
the probability of insertion is equal for every coefficient.
The Jsteg does not embed in the coefficients that are equal
to 0 and 1 since artifacts caused by such insertion can be
easily detected. For the same reason, the DC coefficient is not
used for insertion as well. The number of usable coefficients
in each vector Ck, k = {2, . . . , 64}, is represented by a
random variable nk ≤ n. The number of usable coefficients
nk depends on the image content and the quantization matrix
(hence the quality factor). Without loss of generality, the nk
first components of the vector are usable and the remaining

n − nk components are excluded. Accordingly, the insertion
rate R is defined as the ratio of the length L and the number
of usable coefficients in the whole cover image C

R =
L∑64
k=2 nk

. (42)

The message is embedded with rate R in the cover image C
to create a stego-image S = (S1, . . . , S64). The pmf of Sk,
denoted QR,θk,∆k

, is well described in [41], [42]: ∀l 6= {0, 1}

QR,θk,∆k
(l) =

(
1− R

2

)
Pθk,∆k

(l) +
R

2
Pθk,∆k

(l), (43)

where l indicates the integer l with LSB flipped l = l+(−1)l.
As described above, coefficients with value 0 and 1 are not
used for security reason. Hence, the pmf Pθk,∆k

does not
change for l = {0, 1} after insertion

QR,θk,∆k
(0) = Pθk,∆k

(0) (44)
QR,θk,∆k

(1) = Pθk,∆k
(1). (45)

When inspecting the image V that is either a cover image
{V = C} or a stego-one {V = S}, the goal of the test is to
decide between two hypotheses defined as ∀k = {2, . . . , 64},
∀i = {1, . . . , n}H0 =

{
vk,i ∼ Pθk,∆k

,θk ∈ R2
+

}
H1 =

{
vk,i ∼ QR,θk,∆k

,θk ∈ R2
+, R ∈ (0, 1]

}
.

(46)

The DC coefficients V1 are excluded in the problem (46)
because they are not used for the insertion of secret message.
The problem (46) involves two main difficulties. First, two
hypotheses H0 and H1 are composite because the embedding
rate R is unknown in practice. Second, there is the presence
of nuisance parameters θk that is also unknown. In fact, the
nuisance parameters θk do not contain any information about
the presence of hidden bits.

This paper aims to design an statistical test for the problem
(46) assuming that the embedding rate R and the parameters
θk are known. In practice, when the embedding rate R is not
known in advance, one can rely on the Locally Asymptotically
Uniformly Most Powerful (LAUMP), which was exploited in
[42], [43]. Meanwhile, the Generalized Likelihood Ratio Test
(GLRT) [44] allows to deal with unknown nuisance parameters
θk. However, the statistical performance of GLRT can not be
easily established due to the difficulty of studying statistical
properties of the parameters θk. Moreover, the proposed test
only considers first order statistics of DCT coefficients. The
use of higher order statistics (e.g. the correlation between DCT
coefficients) is beyond the scope of this paper.

B. Most Powerful Likelihood Ratio Test

As previously explained, this paper focuses on guaranteeing
a prescribed false-alarm probability. Hence, let define

Kα0
=
{
δ : P0

[
δ(V) = H1

]
≤ α0

}
the class of tests whose false alarm probabilities are upper-
bounded by α0. Here, Pj [·] denotes the probability under
hypothesis Hj , j = {0, 1}. Among all the tests in the class
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Kα0
, it is aimed at finding a test δ which maximizes the power

function defined by

βδ = P1

[
δ(V) = H1

]
.

In virtue of the Neyman-Pearson lemma [19, theorem 3.2.1],
the most powerful test over the class Kα0 is the LRT given
by the following decision rule

δ =


H0 if Λ(V) =

64∑
k=2

Λ(Vk) < τ

H1 if Λ(V) =

64∑
k=2

Λ(Vk) ≥ τ
(47)

where the decision threshold τ is the solution of the equation

P0

[
Λ(V) ≥ τ

]
= α0 (48)

to ensure that δ ∈ Kα0
and Λ(Vk) =

∑nk
i=1 Λ(vk,i). Here, the

LR for one observation Λ(vk,i) is defined by

Λ(vk,i) = log
QR,θk,∆k

(
vk,i
)

Pθk,∆k

(
vk,i
)

= log

[
1− R

2
+
R

2

Pθk,∆k

(
vk,i
)

Pθk,∆k

(
vk,i
)] . (49)

where vk,i = vk,i+(−1)vk,i is the coefficient vk,i with flipped
LSB. Accordingly, Λ(vk,i) can be interpreted as a function of
the integer vk,i.

Let define the function dk(m) as

dk(m) = log

[
1− R

2
+
R

2

Pθk,∆k

(
m+ (−1)m

)
Pθk,∆k

(
m
) ]

. (50)

Based on the definitions of the mathematical expectation and
variance, one can derive the expectation and variance of
Λ(vk,i) under hypothesis H0

µk,0 = E0

[
Λ(vk,i)

]
=
∑
m∈Z

dk(m)Pθk,∆k

(
m
)

(51)

σ2
k,0 = Var0

[
Λ(vk,i)

]
=
∑
m∈Z

(
dk(m)− µk,0

)2
Pθk,∆k

(
m
)
,

(52)

where Ej [·] and Varj [·] respectively denote the expectation
and variance under hypothesis Hj , j = {0, 1}. Meanwhile, the
random variable nk corresponds to the number of coefficients
that are different from 0 and 1. Accordingly, nk follows the
binomial distribution B(n, p∗k) where

p∗k = 1− Pθk,∆k
(0)− Pθk,∆k

(1) (53)

is the success probability. This success probability remains
identical under every hypothesis since the insertion is not
performed in coefficients that are equal to 0 and 1. It follows
from the Wald’s identity [45] that the expectation and variance

α0

β
δ
?
(α

0
)

0.2 0.4 0.6 0.8 1
0.95

0.96

0.97

0.98

1

0

δ? real images
δ? simulation

loss of power due to
parameter estimation

Fig. 4: Detection performance of the test δ? based on the
proposed model with embedding rate R = 0.05 on the
simulated images and real images.

of the random sum Λ(Vk) are defined by

E0

[
Λ(Vk)

]
= E0[nk]E0

[
Λ(vk,i)

]
= np∗kµk,0 (54)

Var0

[
Λ(Vk)

]
= E0[nk]Var0

[
Λ(vk,i)

]
+ E2

0

[
Λ(vk,i)

]
Var0[nk]

= np∗kσ
2
k,0 + np∗k(1− p∗k)µ2

k,0. (55)

In virtue of the Lindeberg CLT [19, theorem 11.2.5], Λ(Vk)
is normally distributed with mean np∗kµk,0 and variance
np∗kσ

2
k,0 + np∗k(1 − p∗k)µ2

k,0. Finally, because of the linearity
property of the Gaussian distribution, the decision function
Λ(V) also follows the Gaussian distribution under hypothesis
H0

Λ(V)
D−→ N (µ0, σ

2
0) (56)

where

µ0 =

64∑
k=2

E0

[
Λ(Vk)

]
=

64∑
k=2

np∗kµk,0 (57)

σ2
0 =

64∑
k=2

Var0

[
Λ(Vk)

]
=

64∑
k=2

[
np∗kσ

2
k,0 + np∗k(1− p∗k)µ2

k,0

]
.

(58)

Similarly, under hypothesis H1, the expectation and vari-
ance of Λ(vk,i) are given by

µk,1 =
∑
m∈Z

dk(m)QR,θk,∆k

(
m
)

(59)

σ2
k,1 =

∑
m∈Z

(
dk(m)− µk,1

)2
QR,θk,∆k

(
m
)
. (60)

Accordingly, Λ(V) follows the Gaussian distribution under
hypothesis H1

Λ(V)
D−→ N (µ1, σ

2
1) (61)
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with mean and variance defined by

µ1 =

64∑
k=2

np∗kµk,1 (62)

σ2
1 =

64∑
k=2

[
np∗kσ

2
k,1 + np∗k(1− p∗k)µ2

k,1

]
. (63)

Since natural images are heterogeneous, it is proposed to
normalize the LR Λ(V) and use the test δ? defined as follows

δ? =

{
H0 if Λ?(V) < τ?

H1 if Λ?(V) ≥ τ?
(64)

with

Λ?(V) =
Λ(V)− µ0

σ0
. (65)

Therefore, Λ?(V)
D−→ N (0, 1) under hypothesis H0. The fact

of normalizing the LR makes the test applicable to any natural
image since the LR follows the standard Gaussian distribution
under hypothesis H0. This also allows to set the decision
threshold independently of the image content. The decision
threshold τ? and the power function βδ? of the test δ? are
given in the following theorem:

Theorem 1. Assuming that the embedding rate R and the
parameters θk are known, the decision threshold and the
power function of the test δ? are given by

τ? = Φ−1(1− α0) (66)

βδ? = 1− Φ

(
µ0 − µ1 + τ?σ0

σ1

)
(67)

where Φ(·) and Φ−1(·) denotes respectively the cumulative
distribution function of the standard Gaussian random vari-
able and its inverse.

The main strength of the proposed test δ? is the guaranteeing
of a prescribed false alarm rate and the analytic establishment
of the detection performance. It can be noted that the scenario
studied by the test δ? may not be realistic because the
parameters θk can not be known in advance in a real image.
An usual approach in practice is to replace the parameters θk
by ML estimates θ̂ML

k . Thus, the detection performance of
the test δ? depends on the accuracy of the proposed model
of DCT coefficients and ML estimates θ̂ML

k . The Fig. 4
shows the detection performance of the proposed test δ? on
10000 simulated images in which DCT coefficients perfectly
follow the proposed model and there is no correlation between
DCT coefficients, and 10000 real images from the BOSSBase
database [38]. Here, the accuracy of the proposed model of
DCT coefficients is highlighted as the empirical detection
power fits almost perfectly the theoretical one.

The fact of replacing the unknown parameters θk by ML
estimates θ̂ML

k shows that the test δ? seems to coincide
with the GLRT. However, the test δ? does not consider the
variability of ML estimates θ̂ML

k . Because the ML estimates
θ̂ML
k are numerically derived by the optimization method,

their statistical properties can not be easily studied. This
leads to a difficulty of establishing analytically the statistical
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Fig. 5: Averaged χ2 GOF test statistics of GΓ and proposed
model for 63 AC coefficients

performance of the GLRT. The study of the GLRT lies out of
the scope of the paper.

C. Embedding Rate Estimation

In this section, the problem of embedding rate estimation is
formulated into the ML framework using the proposed model
of DCT coefficients. As discussed in [46], ML estimators
[41], [47] are more statistically rigorous, but their performance
is weak due to lack of accurate models for cover images.
An extension for ML framework is derived in [22] that is
based on the concept of a precover introduced in [46] and
the Generalized Cauchy distribution for unquantized DCT
coefficients [7]. On the contrary, this paper exploits the model
of quantized DCT coefficients to estimate the embedding rate
R. Given an inspected image V, the ML estimate R̂ is given
by

R̂ = arg max
0≤R≤1

64∑
k=2

nk∑
i=1

logQR,θk,∆k

(
vk,i
)

(68)

where QR,θk,∆k

(
vk,i
)

is defined in (43). Here again, the
DC coefficients and the coefficients that are equal to 0 and
1 are excluded. The maximization problem (68) is solved
numerically by the Nelder-Mead method [40].

VI. NUMERICAL RESULTS

A. Comparison Between the Proposed Model and the GΓ
Model

Since the Laplacian model is a special case of the proposed
model and GΓ model, these two models would result in a
better fit to the empirical data than Laplacian. The Fig. 2
and Fig. 3 show that the Laplacian model is not relevant to
model accurately DCT coefficients. However, they do not show
clearly the difference between the proposed model and the GΓ
model. It is proposed to use a GOF test to compare these two
models. The χ2 GOF test is preferable for the comparison
than the KS test because the deviation from an assumed pdf is
more interesting than deviation from a cumulative distribution
function, as noted in [12]. The model whose the χ2 value
is smaller is more relevant to characterize the distribution of
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Fig. 6: Detection performance of the test δ? based on the
quantized Laplacian, quantized GΓ and proposed model on
the BOSSBase with embedding rate R = 0.05.
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Fig. 7: Detection performance of the test δ? based on the
quantized Laplacian, quantized GΓ and proposed model on the
subset of 1000 images from the BOSSBase with embedding
rate R = 0.05.

DCT coefficients. The experiments are conducted on all the
images of the Dresden Image Database [48]. The averaged χ2

GOF test statistics for 63 AC coefficients illustrated in Fig. 5.
These results obviously show the relevance of the proposed
model.

B. Steganalysis of Jsteg Algorithm

To illustrate the detection performance of the test δ? based
on the proposed model, the reference BOSSBase database
[38] containing 10000 grayscale images of size 512× 512 in
PGM format is chosen to conduct experiments. The embedding
rate R is set at 0.05 for the Jsteg algorithm. The embedded
message is drawn from a binomial distribution B(1, 1/2), i.e.
each hidden bit can be 0 or 1 with the same probability.
The coefficients in which secret bits are embedded are ran-
domly chosen. All the PGM images are converted to JPEG
format using imagemagick with quality factor of 70. The 63
vectors of AC coefficients are extracted from every image.

The quantization matrix is given in the header of each image
file. The parameters θk = (ηk, νk)T are estimated for each
image and for each frequency based on the ML approach.
The estimates θ̂k are used to generate each vector Vk such
that the simulated data involves the same model parameters as
the ones estimated from real images. Therefore, the simulated
data perfectly follows the proposed model and there is no
correlation between simulated DCT coefficients. The test δ? is
performed on 10000 simulated images and 10000 real JPEG
images. It is desirable to evaluate the loss of power of the
proposed test δ? in the practical context. The power functions
obtained from simulated images and real images are shown in
Fig. 4. A small loss of power is obviously revealed between the
two power functions, which may be caused by the following
reasons. Firstly, the accuracy of the proposed model may
be affected by assumptions required for above mathematical
analysis (e.g. the pixels are identically distributed within
8 × 8 block) and the small error of approximation in the
CLT. Secondly, the small correlation between DCT coefficients
exists in real JPEG images. Finally, it can be caused by
the estimation of model parameters, which are numerically
provided by the optimization method. It should be noted that
the proposed model is more accurate than other empirical
ones in the literature (e.g. Laplacian and Generalized Gamma
model). The loss of power of the test δ? is considerably smaller
than the test proposed in [21] based on the quantized Laplacian
distribution.

The proposed test δ? can be used with any cover image
model. The more accurate the cover image model is, the
better the detection performance is. The Fig. 6 illustrates the
detection performance of the test δ? based on quantized the
Laplacian, quantized GΓ and proposed model on 10000 real
JPEG images. The detection performances are illustrated using
the Receiver Operating Characteristic (ROC) curve which
presents the detection power β as a function of the false alarm
probability α0. The test δ? based on the GΓ and proposed
model shows a higher detection probability than the Laplacian
model-based test. Moreover, it appears that the GΓ model fails
for a subset of about 1000 images, which leads to its very
low power function for 0 ≤ α0 ≤ 0.1 while the proposed
model still shows a high detection performance. The detection
performance for this subset is illustrated in Fig. 7. These
results also show that the proposed model is more robust and
accurate for the DCT coefficients. The term ”robust” means
the accuracy of the model for a wide range of images. Besides,
the test δ? based on the proposed model is nearly perfect for
embedding rate R = 0.1, i.e. βδ? ∼= 1, for any false alarm
probability α0.

Potentially, there are many detectors in the literature could
be compared with the proposed test. The ZP detector [49] was
known as the first quantitative attack on Jsteg. The well-known
WS detector [24, Eq. (9)] is also included in the comparison
because of its efficiency and low computational complexity.
The recent quantitative structural detector ZMH-Sym [22]
based on the zero message hypothesis (ZMH) framework and
the exploitation of the natural symmetry of DCT coefficients
in the cover image was shown as the best detector among
histogram-based attacks. The quantized Laplacian model-
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based test [21] is also performed because it is based on the
same framework of hypothesis testing theory. On the contrary
to the support vector regression-based detector [25] that needs
an expensive training phase, all above detectors, including the
proposed test, work solely on an image-by-image basis. The
Fig. 8 shows the comparison between the proposed test δ?

and those detectors. We have also performed the ZMH-Cat
structural detector [22] but do not report it in Fig. 8 because
its power function is considerably worse than the detector
ZMH-Sym’s one. Obviously, the proposed test outperforms
other detectors, whatever the false alarm probability. It should
particularly be noted that for very low-false alarm rate the
proposed test performs much better than the others, which is
the most important in practice since the false-alarm probability
must be set very low.

In terms of embedding rate estimation, the accuracy of all
estimators is evaluated for embedding rate R ranging from
0.01 to 0.1 using the Mean Absolute Error (MAE) criteria:
1
N

∑N
i=1 |R̂i−R| where N = 10000 is the number of images.

It should be noted that the ZMH-Sym and ZMH-Cat estimators
[22] were proposed to estimate the change rate β that is
defined as the relative portion of modified DCT coefficients

with respect to the number of DCT coefficients in the image
that are not equal to 0 or 1. Under assumption that no matrix
embedding is used, which is the case in this paper, the expected
value of the embedding rate R is 2β. Therefore, the output
value of those estimators is simply multiplied by a factor of
2 to obtain an estimator of embedding rate R. The Fig. 9
shows the MAE for all estimators. The proposed ML estimator
(68) outperforms other estimators. The ZMH-Sym estimator
has a comparable accuracy to the proposed ML estimator but
it has more outliers, which leads to the degradation of the
ROC curve. The very high detection performance of the test
δ? (Fig. 8) and high accuracy of embedding rate estimation
(Fig. 9) highlight the accuracy of the proposed model of
quantized DCT coefficients.

VII. CONCLUSION

This paper proposes a novel statistical model of quantized
DCT coefficients based on a mathematical framework that
has not been provided yet in the literature. Numerical results
show that the proposed model is more accurate than the other
ones including the popular Laplacian and Generalized Gamma.
Based on this high accurate model, the paper exploits it for
the steganalysis of Jsteg algorithm to detect a small change
in the cover image due to the insertion of secret message.
A statistical test is designed to warrant a prescribed false
alarm probability and a ML estimator for embedding rate is
also proposed. Further research apply the proposed model in
different fields such as digital forensics.

APPENDIX
REVIEW ON EXISTING MODELS OF AC COEFFICIENTS

This appendix only reviews the Laplacian and GΓ model
of AC coefficients. These models are used for the comparison
with the proposed model in experiments. The Laplacian pdf
of the coefficient I is given by

fI(x) =
λ

2
exp

(
− λ|x|

)
(69)

Accordingly, the pmf of the quantized coefficient V is derived
as [21]

PV (l) =


exp

(
− λ∆l

)
sinh

(λ∆

2

)
for l 6= 0

1− exp
(
− λ∆

2

)
for l = 0

(70)

Meanwhile, the GΓ pdf is given by [13]

fI(x) =
γβη

2Γ(η)
|x|ηγ−1 exp

(
− β|x|γ

)
(71)

One obtains the pmf of V for l 6= 0

PV (l) =

γc

(
η, β

[
∆
(
|l|+ 1

2

)]γ)
− γc

(
η, β

[
∆
(
|l| − 1

2

)]γ)
2Γ(η)

(72)
and

PV (0) =
γc

(
η, β

(
∆
2

)γ)
Γ(η)

(73)

where γc(s, x) =
∫ x

0
ts−1e−tdt is the incomplete gamma

function.
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[24] R. Böhme, “Weighted stego-image steganalysis for JPEG covers,” in
Proc. 10th Int. Workshop Information Hiding, vol. 5284. Springer,
May 2007, pp. 178 – 194.

[25] T. Pevny, J. Fridrich, and A. Ker, “From blind to quantitative steganaly-
sis,” Information Forensics and Security, IEEE Transactions on, vol. 7,
no. 2, pp. 445 – 454, Apr. 2012.

[26] C. Scott, “Performance measures for Neyman-Pearson classification,”
Information Theory, IEEE Transactions on, vol. 53, no. 8, pp. 2852
–2863, aug. 2007.

[27] J. Nakamura, Image Sensors and Signal Processing for Digital Still
Cameras. CRC Press, 2005.

[28] G. E. Healey and R. Kondepudy, “Radiometric ccd camera calibration
and noise estimation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16,
pp. 267 – 276, 1994.

[29] R. Ramanath et al., “Color image processing pipeline,” Signal Process-
ing Magazine, IEEE, vol. 22, no. 1, pp. 34 – 43, Jan. 2005.

[30] ——, “Demosaicking methods for bayer color arrays,” Journal of
Electronic Imaging, vol. 11, no. 3, pp. 306 – 615, Jul. 2002.

[31] W. Pennebaker and J. Mitchell, Jpeg Still Image Compression Data.
Springer, 1992.

[32] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical
poissonian-gaussian noise modeling and fitting for single-image raw-
data,” IEEE Trans. Image Process., vol. 17, no. 10, pp. 1737 – 1754,
Oct. 2008.

[33] M. Blum, “On the central limit theorem for correlated random variables,”
Proceedings of the IEEE, vol. 52, no. 3, pp. 308 – 309, Mar. 1964.

[34] S. Louhichi, “Rates of convergence in the central limit theorem for
some weakly dependent random variables,” Theory of Probability and
Its applications, vol. 46, no. 2, pp. 297 – 315, 1998.

[35] L. Chen, “The rate of convergence in a central limit theorem for depen-
dent random variables with arbitrary index set,” Annals of probability,
1987.

[36] M.-S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and
performance of wireless communication systems over nakagami-fading
channels,” Vehicular Technology, IEEE Transactions on, vol. 50, no. 6,
pp. 1471 – 1480, Nov. 2001.

[37] I. M. Ryzhik and I. S. Gradshteyn, Tables of Integrals, Series, and
Products. United Kingdom: Elsevier, 2007.

[38] P. Bas, T. Filler, and T. Pevný, “Break our steganographic system —
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