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ABSTRACT

This paper investigates the problem of identifying the source imag-
ing device of the same model for a natural raw image. The approach
is based on the Poissonian-Gaussian noise model which can accu-
rately describe the distribution of the given image. This model re-
lies on two parameters considered as unique fingerprint to identify
source cameras of the same model. The identification is cast in the
framework of hypothesis testing theory. In an ideal context where
all model parameters are perfectly known, the Likelihood Ratio Test
(LRT) is presented and its performance is theoretically established.
The statistical performance of LRT serves as an upper bound of the
detection power. For a practice use, when the image parameters are
unknown and camera parameters are known, a detector based on es-
timation of those parameters is designed. Numerical results on sim-
ulated data and real natural raw images highlight the relevance of
our proposed approach.

Index Terms— Hypothesis testing theory, Source camera iden-
tification, Poissonian-Gaussian noise model

1. INTRODUCTION

In today’s digital world, due to the popularity of digital cameras and
the ease of imaging editing, image forensics has received great focus
in the past decade. Digital image forensics can be categorized into
two kinds. The one is digital watermarking which is defined as an
active forensic approach; the other is defined as a passive forensic
approach which discusses the origin or authenticity of the given im-
age. In this paper, we mainly focus on the image origin identification
problem.

1.1. State of the art

Source camera or image origin identification, which relies on the
camera fingerprints left in the digital images, aims to verify whether
a given digital image was acquired by a specific device or a certain
camera model.

Source camera identification can generally be divided into two
categories [1]. The methodologies in the first category rely on the
imaging pipeline. By using the white balancing as a camera finger-
print, the algorithm proposed in [2] identified the device originality
of a given image. By exploiting the fingerprints in the acquisition
stage such as lens distortion/aberration [3], the method was proposed
to identify the source camera model. The methodologies proposed
by [4–7] made use of Color Filter Array (CFA) and demosaicing
algorithms to authenticate the camera model. The methods in the
second category aims to identify the fingerprints of the acquisition
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device. Due to imperfections during manufacturing process, Sensor
Pattern Noise (SPN) extracted from given images was used for i-
dentifying source camera model [8]. Moreover, the Photo-Response
Non-Uniformity noise (PRNU) based detector proposed in [9, 10]
could implement device identification. The challenging problem-
s are that a few manufacturer share similar image processing tech-
nique which leads to the similarity when extracting fingerprints from
given images, especially in the case of same camera manufacturer
and model. Otherwise, detectors proposed in the literature limitedly
investigate the hypothesis theory and statistical image models.

1.2. Contribution of the paper

In our prior study, based on the hypothesis testing theory with a s-
tatistical noise model of a natural image [11], the detector was de-
signed to identify the camera model of a given image [1, 12]. How-
ever, this detector can not identify the source camera device of the
same model. Inspired by the detector proposed in [1], it is propsoed
to identify the unique fingerprint which can not only authenticate
the images from different models, but also from different devices of
the same model. The main contribution is two folds. The use of
the noise model [11], together with hypothesis theory, allows us to
optimize the Likelihood Ratio Test (LRT) when camera and image
parameters are known. Then in the practical case of not knowing im-
age parameters, estimations have to be used instead; this leads to the
design of the proposed detector with estimated parameters. Numeri-
cal results show the sharpness of the theoretically established results
and the good performance that the proposed statistical test achieves.

1.3. Organization of the paper

The paper is organized as followed. Section 2 recalls the principal
of the noise model proposed in [11]. Then, the camera fingerprint
is discussed. In Section 3, based on the proposed model, the L-
RT for camera device detection is proposed and its performance is
given. Section 4 addresses the practical detector with estimated im-
age parameters. Finally, Section 5 presents numerical results of the
proposed detector on the simulated and real images and Section 6
concludes this paper.

2. POISSONIAN-GAUSSIAN NOISE MODEL

On the assumption of Poissonian-Gaussian noise model which char-
acterizes the response of a digital imaging sensor for a natural raw
image [11], the noise model parameters denote a fingerprint remain-
ing the same in an image (see details in [1]). However, the fingerprint
proposed in [1] is incapable of identifying the origin of different de-
vices for the same camera model.



By challenging the assumption that among a single image all the
pixels from different level sets share the same camera parameters, it
is proposed that the pixels of each level set follow the Poissonian-
Gaussian noise model with different parameters. Then let us assume
that a natural raw image is a vector Z = {zi} of I pixels where i ∈
{1, · · · , I}. Let us define the fingerprint of camera source device as
(a, b), where the vector a = {a1, · · · , aK}, the constant b and the
index k ∈ {1, · · · ,K} with K the number of level sets. Hence the
following model is proposed:

zi ∼ N (µi, akµi + b) (1)

where N (·) denotes the Gaussian distribution with the expectation
µi and variance akµi + b, the camera parameters (ak, b) represen-
t the unique fingerprint originating from the k-th level set. Each
level set is characterized by its center value ui and allowed devi-
ation ∆, µi ∈ [ui − ∆i

2
, ui + ∆i

2
]. In practice, assuming a sig-

nal in the range [0, 1], one can take fixed ∆i ≡ ∆ and equispaced
ui ∈ {∆j , j = 1, ...K = b∆−1c}, where the b.c indicate the round-
ing to the nearest larger or equal integer. It is should be noted that
since the Gaussian distributed noise such as read-out noise, which is
stationary and independent of the signal, does not change among d-
ifferent images for the same camera device, the parameter b remains
the same (see details in [1]).

Then immediately, let us demonstrate our estimated camera fin-
gerprints in comparison with the fingerprints proposed in [1]. For
a fixed ISO sensitivity, the camera fingerprints (a, b) can be distin-
guished between Nikon D70 and Nikon D200, but are not discrim-
inative for different devices of the same camera models (see Fig.
1a). Fig. 1b illustrates that the fingerprint ak proposed in this paper
can be distinguished for different devices of the same model. Then,
in the following section, based on the proposed noise model, let us
establish the LRT with knowing camera and image parameters.

3. LIKELIHOOD RATIO TEST FOR TWO SIMPLE
HYPOTHESIS

3.1. Problem statement

This paper aims to authenticate source devices of the same camer-
a model based on the Poissonian-Gaussian noise model proposed
in [11]. The camera device identification problem is cast in the
framework of hypothesis testing theory. Then let us analyze two
devices 0 and 1. Each camera device j, j ∈ {0, 1} is characterized
by camera parameters (ak,j , bj). the problem consists in choosing
between the two following hypothesesH0: “the pixels zi follow the
distribution N0” and H1: “the pixels zi follow the distribution N1”
which can be written formally as:{

H0 : {zi∼N0(µi, ak,0µi + b0)} ,
H1 : {zi∼N1(µi, ak,1µi + b1)} .

(2)

A statistical test is a mapping δ : ZI·J 7→ {H0,H1} such that
hypothesis Hi is accepted if δ(Z) = Hi (see [14] for details on
hypothesis testing). As previously explained, this paper focuses on
the Neyman-Pearson bi-criteria approach: maximizing the correct
detection probability for a given false alarm probability α0. Let:

Kα0 =

{
δ : sup

θ
PH0 [δ(Z) = H1] ≤ α0

}
, (3)

be the class of tests with a false alarm probability upper-bounded by
α0. Here PHi [A] stands for the probability of eventA under hypoth-
esis Hi, i = {0, 1}, and the supremum over θ has to be understood
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(a) Estimated camera parameters (a, b) proposed in [1] of 50 raw
images.
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(b) Estimated camera parameter ak in k-th level set. For simplicity,
only a part of level sets are selected for comparison.

Fig. 1: Camera fingerprints comparison of different devices per cam-
era model with ISO 200 and different camera settings. Natural raw
images for Nikon D70, Nikon D70s and Nikon D200 are from the
Dresden image database [13].

as whatever the distribution parameters might be, in order to ensure
that the false alarm probability α0 can not be exceeded. Among all
the tests in Kα0 , it is aimed at finding a test δ which maximizes the
power function, defined by the correct detection probability:

βδ = PH1 [δ(Z) = H1], (4)

which is equivalent to minimize the missed detection probability
α1(δ) = PH1 [δ(Z) = H0] = 1− βδ .

The main difficulty of the problem (2) is to estimate the cam-
era parameters (ak,j , bj) and image parameter µi. In the following
subsection, we detail the statistical test that takes into account both
camera and image parameters and we study the optimal detection
when those parameters are known. A discussion on nuisance param-
eters is also provided in Section 4.

3.2. Optimal detection framework

When the camera and image parameters are known, problem (2) is
reduced to a statistical test between two simple hypotheses. In such



a case, the Neyman-Pearson Lemma [14, theorem 3.2.1] states that
the most powerful test in the class Kα0 (3) is the LRT defined, on
the assumption that pixels zi are independent, as:

δlr(Z) =


H0 if Λlr(Z) =

I∑
i=1

Λlr(zi) < τ lr,

H1 if Λlr(Z) =

I∑
i=1

Λlr(zi) ≥ τ lr,

(5)

where the decision threshold τ lr is the solution of the equation
PH0

[
Λlr(Z) ≥ τ lr

]
= α0, to ensure that the false alarm probability

of the LRT equals α0, and the log Likelihood Ratio (LR) for one
observation is given by:

Λlr(zi) = log

(
N0[zi]

N1[zi]

)
. (6)

From the definition of N0[zi] and N1[zi] (2), it is easy to write the
LR (6) as:

Λlr(zi) = log

(
σi,0
σi,1

)
+
σ2
i,1 − σ2

i,0

2σ2
i,1σ

2
i,0

(zi − µi)2, (7)

where the variance σ2
i,j = ak,jµi + bj , j ∈ {0, 1} and level set

index k ∈ {1, · · · ,K}.

3.3. Statistical performance of LRT

Due to the fact that observations are considered to be indepen-
dent, the LR Λlr(Z) is the sum of random variables and some
asymptotic theorems allow us to establish its distribution when the
number of coefficients becomes “sufficiently large”. Let us denote
EHj (Λlr(zi)) and VHj (Λlr(zi)) the expectation and the variance of
the LR Λlr(zi) under hypothesis Hj , j = {0, 1}. The Lindeberg’s
central limit theorem (CLT) [14, theorem 11.2.5] states that as I
tends to infinity it holds true that1:

I∑
i=1

Λlr(zi)− EHj (Λlr(zi))(
I∑
i=1

VHj (Λlr(zi))

)1/2

d−→ N (0, 1) , j = {0, 1} , (8)

where d−→ represents the convergence in distribution andN (0, 1) is
the standard normal distribution, i.e. with zero mean and unit vari-
ance. This theorem is of crucial interest to establish the statistical
properties of the proposed test [15–19]. Immediately, one can nor-
malize under hypothesisH0 the LR Λlr(Z) as follows:

Λ
lr

(Z) =
Λlr(Z)−

∑I
i=1 EH0(Λlr(zi))(∑I

i=1 VH0(Λlr(zi))
)1/2

.

It is thus straightforward to define the normalized LRT with Λ
lr

(Z)
by:

δ
lr

(Z) =

{
H0 if Λ

lr
(Z) < τ lr

H1 if Λ
lr

(Z) ≥ τ lr.
(9)

1Note that we refer to the Lindeberg’s CLT, whose conditions are easily
verified in our case, because the random variable are independent but are not
i.i.d.

Hence, it is immediate to set the decision threshold that guarantees
the prescribed false alarm probability:

τ lr = Φ−1 (1− α0) , (10)

where Φ and Φ−1 respectively represent the cumulative distribution
function (cdf) of the standard normal distribution and its inverse.
Similarly, denoting

mj =

I∑
i=1

EHj (Λlr(zi));σ
2
j =

I∑
i=1

VHj (Λlr(zi)) , j={0, 1},

it is also straightforward to establish the detection function of the
LRT given by:

β
δ
lr = 1− Φ

(
σ0

σ1
Φ−1 (1− α0) +

m0 −m1

σ1

)
. (11)

Equations (10) and (11) emphasize the main advantage of nor-
malizing the LR as described in relation (9): it allows to set any
of threshold that guarantees a false alarm probability independently
from any distribution parameters.

4. PROPOSED DETECTOR WITH ESTIMATED CAMERA
PARAMETERS

This paper employs the segmentation algorithm as our prior method
[1]. The image Z is first transformed into the wavelet domain and
then segmented intoK non-overlapping homogeneous level sets, de-
noted Sk, of size nk, k ∈ {1, · · · ,K}. Among each level set Sk,
all the pixels are assumed to follow the Gaussian distribution inde-
pendently and identically. Then, let us denote zwapp

k = {zwapp
k,i }

nk
i=1

and zwdet
k = {zwdet

k,i }
nk
i=1 as the vector of wavelet approximation coef-

ficients and detail coefficients respectively. Since the wavelet trans-
formation is linear, the proposed noise model in the spatial domain
can be used in the wavelet domain (see details in [11]). Immediately,
the coefficients zwapp

k,i and zwdet
k,i follows the Gaussian distribution:

zwapp
k,i ∼ N (µk, ‖φ‖22σ2

k) (12)

zwdet
k,i ∼ N (0, σ2

k) (13)

where σ2
k = akµk + b denoting the linear relationship between the

expectation and variance. φ denotes the 2D normalized wavelet s-
caling function. Then in k-th level set, the ML (Maximum Likeli-
hood) estimated local mean µ̂k = 1

nk

∑nk
i=1 z

wapp
k,i and local variance

v̂k = 1
nk−1

∑nk
i=1(zwdet

k,i − 1
nk

∑nk
i=1 z

wdet
k,i )2 are averaged by:

µ̂?k =
1

N · nk

N∑
n=1

nk∑
i=1

zwapp
k,i (14)

v̂?k =
1

N · (nk − 1)

N∑
n=1

nk∑
i=1

(zwdet
k,i −

1

nk

nk∑
i=1

zwdet
k,i )2 (15)

where the vector n ∈ {1, · · · , N} denoted as the number of multiple
images. Then the camera parameters (âk, b̂) can be given by:

âk =
v̂?k − b̂
µ̂?k

(16)

where b̂ is estimated by using the algorithm proposed by [1].



In Section 3 the framework of hypothesis testing theory has been
presented assuming that all the model parameters are known for each
pixel. On the assumption that the camera parameters (ak,0, b0) and
(ak,1, b1) are known and image parameter µk are unknown, the pro-
posed practical test detects the given image Z which is either ac-
quired by camera device 0 or camera device 1. A usual solution
consists in replacing the unknown parameter by its ML estimation.
This leads to the construction of the following practical test:

δ̂(Z) =


H0 if Λ̂(Z) =

K∑
k=1

nk∑
i=1

Λ̂(zwapp
k,i ) < τ̂,

H1 if Λ̂(Z) =

K∑
k=1

nk∑
i=1

Λ̂(zwapp
k,i ) ≥ τ̂ ,

(17)

where τ̂ the solution of equation PH0 [Λ̂(Z) ≥ τ̂ ] = α0 and the
decision statistic Λ̂(zwapp

k,i ) for each pixel is given by:

Λ̂(zwapp
k,i )=

1

2
log

ak,0µ̂k + b0
ak,1µ̂k + b1

+
1

2
(

1

ak,0µ̂k+b0
− 1

ak,1µ̂k + b1
) ·

(zwapp
k,i − µ̂k)2

‖φ‖22
.

(18)

In order to have a normalized decision statistic for the whole image,
Λ̂(Z) is redefined as:

Λ̂(Z) = 1
SL

∑K
k=1

∑nk
i=1 Λ̂(zwapp

k,i )− EH0(Λ̂) (19)

with S2
L =

∑K
k=1

∑nk
i=1 VH0(Λ̂).

5. NUMERICAL EXPERIMENTS

To verify the sharpness of the theoretically established results, it
is proposed to use a Monte Carlo simulation on a synthetic image
with 1000 repetitions on the assumption of different pixel number.
Fig. 2a illustrates the detection performance as a Receiver Operating
Character (ROC) respectively for I = {50, 100, 200, 500} pixels
where the camera device 0 and 1 are characterized by (ak,0, b0) and
(ak,1, b1). Before testing, the fingerprints are estimated previously
by using our proposed algorithms (see details in Section 4). As Fig.
2a showed, the test performs better and better with increasing the
number of pixels. It is should be noted that due to limited writing
space, camera fingerprints can not be illustrated in this paper.

min. PE Power α0 = 0.05

Proposed test Nikon D70 0.065 0.91
Nikon D70s 0.070 0.89
Nikon D200 0.015 0.98

Test [10] Nikon D70 0.005 1.0
Nikon D70s 0.01 1.0
Nikon D200 0.015 1.0

Test [1] Nikon D70 0.375 0.23
Nikon D70s 0.305 0.33
Nikon D200 0.415 0.05

Table 1: Empirical performance between the proposed test, the one
proposed in [1] also based on heteroscedastic noise and the well-
known PRNU PCE from [10].
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Fig. 2: Illustration of ROC curves comparison on simulated and real
images. All the camera settings for ISO equal 200.

Finally, let us demonstrate the detection performance on the re-
al images. In our experiments, the Dresden image database is used
[13]. All full-resolution images are selected from three camera mod-
els Nikon D70, Nikon D70s and Nikon D200 where each camera
model has two devices. First, it is proposed to divide each set of
images from each device into two subsets: “Learning Subset” and
“Testing Subset”. Images of “Learning Subset” are used to extract
device fingerprints; images of “Testing Subset” are used to identify
the origin of a given image. It should be noted that “Learning Sub-
set” and “Testing Subset” do not have any intersection. The number
of “Learning Subset” is set as 100. As Fig. 2b illustrated , our pro-
posed detector has the considerable ability of identifying the camera
devices with a high performance. Nevertheless, the detector of [1] n-
early can not identify the different devices of the same model. More-
over, let us illustrate the emperical performance at the give FAR α0

and its minimal Prediction Error (PE) in Table 1. The performance
of our proposed test is very close to the prior-art detector [10] and
better than the test [1].

6. CONCLUSION

This paper studies the problem of identifying the source camera de-
vice. Based on the Poissonian-Gaussian noise model, the problem is
cast in the framework of hypothesis testing theory. Assuming that
the camera and image parameters are prior known, the statistical
performance of the LRT is analytically established. In the practi-
cal case, based on the estimated image parameters, our designed test
outperforms the detector of [1].
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