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Abstract

This paper investigates the statistical detection of JSteg steganography. The approach is based on a statistical
model of Discrete Cosine Transformation (DCT) coefficients challenging the usual assumption that among a
subband all the coefficients are independent and identically distributed (i. i. d. ). The hidden information
detection problem is cast in the framework of hypothesis testing theory. In an ideal context where all model
parameters are perfectly known, the Likelihood Ratio Test (LRT) is presented and its performances are
theoretically established. The statistical performance of LRT serves as an upper bound for the detection power.
For a practical use where the distribution parameters are unknown, by exploring a DCT channel selection, a
detector based on estimation of those parameters is designed. The loss of power of the proposed detector,
compared with the optimal LRT is small, shows the relevance of the proposed approach.

Keywords: Hypothesis testing theory; JSteg steganalysis; DCT distribution model; hidden information
detection

1 Introduction and contributions
Steganography and steganalysis have received more
and more focus in the past two decades since the re-
search in this field concerns law enforcement and na-
tional strategic defense. Steganography is the art and
science of hiding secret messages in the cover media.
On the opposite, steganalysis is about the detection
of hidden secret information embedded in the cover
media, also called stego media. If a steganalysis al-
gorithm detects the inspected media as the stego one,
even without knowing any extra information about the
secret message, steganographic approach fails.

1.1 State of the art
In today’s digital world, there exists many stegano-
graphic tools available on the Internet. Due to the
fact that some are readily available and very simple
to use, it is necessary to design the most reliable ste-
ganalysis methodology to fight back steganography. In
general, due to its simplicity most of steganographic
schemes insert the secret message into the Least Sig-
nificant Bit (LSB) plane of cover media, including two
kinds of steganography: LSB replacement and LSB
matching. The former algorithm aims at replacing LSB
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plane in the spatial domain or frequency domain of
the cover media by 0 or 1. The latter algorithm, also
known as ±1 embedding (see [1, 2, 3]), randomly in-
crement or decrement pixel or DCT coefficient value to
match the secret bit to be embedded when necessary.
Since LSB replamcement is easier to implement it re-
mains more popular and, hence, as of December 2011,
WetStone declared that about 70 percent of the avail-
able steganographic softwares are based on the LSB
replacement algorithm [4]. Therefore the research on
LSB replacement steganalysis remains an active topic.

Although the LSB replacement steganalysis method
(see [5, 6, 7, 8, 9, 10]) has been studied for many years,
it can be noted that most of the prior-art detectors
are designed to detect data hidden in the spatial do-
main. In addition, for only a few detectors the sta-
tistical properties have been studied and established,
referred to as the optimal detectors. As detailed in [11],
a wide range of problems, theoretical as well as prac-
tical, remain uncovered and some prevent the moving
of “steganography and steganalysis from the labora-
tory into the real world”. This is especially the case
in the field of Optimal Detection, see [11, Sec. 3.1], in
which this paper lies. Roughly speaking, the goal of
optimal detection in steganalysis, is to exploit an ac-
curate statistical model of cover source, usually digital
images, to design a statistical test whose properties
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can be established; typically, in order to guarantee a
False Alarm Rate (FAR) and to calculate the optimal
detection performance one can expect from the most
powerful detector.

In 2004, the Weighted Stego-image (WS) method [12]
and the test proposed in [13] for LSB replacement ste-
ganalysis changed the situation opening the way to
optimal detectors. Driven by these pioneer works, the
enhanced WS algorithm proposed in [14] improved the
detection rate by enhancing pixels predictor, adjusting
weighting factor and introducing the concept of bias
correction. Nevertheless, the drawback of original WS
method is that it can only be applied in the spatial
domain. Due to the prevalence of images compressed
in the Joint Photographic Experts Group (JPEG) for-
mat, how to deal with this kind of images becomes
mandatory. Inspired by the prior studies [12, 14], the
WS steganalyser for JPEG covers was proposed in [15].
However, the WS steganalyser does not allow to get
high detection performance for a low FAR, see [16],
and its statistical properties remain unknown, which
prevents the guarantee of a prescribed FAR. In prac-
tical forensic cases, since a large database of images
needs to be processed, the getting of a very low FAR
is crucial.

1.2 Contributions of the paper
For the detection of data hidden within the Discrete
Cosine Transformation (DCT) coefficients of JPEG
images, the application of hypothesis testing theory
for designing optimal detectors, that are efficient in
practice, is facing the problem of accurately mod-
elling statistical distribution of DCT coefficients. It
can be noted that several models have been proposed
in the literature to model statistically the DCT co-
efficients. Among those models, the Laplacian distri-
bution is probably the most widely used due to its
simplicity and its fairly good accuracy [17]. More ac-
curate models such as the Generalized Gaussian [18]
and, more recently, the Generalized Gamma model [19]
have been shown to provide much more accuracy at the
cost of higher complexity. Some of those models have
been exploited in the field of steganalysis, see [20, 21]
for instance. In the framework of optimal detection,
a first attempt has been made to design a statistical
test modelling the DCT coefficient with the quantized
Laplacian distribution, see [22].

It should be noted that other approaches have been
proposed for the detection of data hidden within
DCT coefficients of JPEG images, to cite a few, the
structural detection [23], the category attack [24],
the WS detector [15], and universal or blind detec-
tors [25, 26]. However, establishing the statistical prop-
erties of those detectors remains a difficult work which

has not been studied yet. In addition, most accurate
detectors based on statistical learning are sensitive to
the so-called cover source-mismatch [27]: the training
phase must be performed with caution.

In this context, the detector proposed in [22] is an
interesting alternative; however it is based on the as-
sumption that DCT coefficients are independent and
identically distributed (i. i. d. ) within a subband and
have a zero expectation which might be inaccurate
and hence make the detection performance poor in
practice. In practice, this model is not independent
of the image content, which performs well only in the
case of high-texture image (See Figure 1a), but hardly
holds true in the case of low-texture image (See Figure
1b). On the opposite, this paper proposes a statistical
model assuming that each DCT coefficient has a differ-
ent expectation and variance. The use of this model,
together with hypothesis theory, allows us to design
the most powerful Likelihood Ratio Test (LRT) when
the distribution parameters (expectation and variance)
are known. Then in the practical case of not knowing
those parameters, estimations have to be used instead;
this leads to the design of the proposed detector with
estimated parameters. By taking into account those
distribution parameters as nuisance parameters and
using an accurate estimation, it is shown that the loss
of power compared with the optimal detector is small.

Therefore, the contributions of this paper are as fol-
lows:
1 First, a novel model of DCT coefficients is pro-

posed ; its major originality is that this model
does not assume that all the coefficients of the
same subband are i. i. d. .

2 Second, assuming that all the parameters are
known, this statistical model of DCT coefficients
is used to design the optimal test to detect data
hidden within JPEG images with JSteg algo-
rithm. This statistical test takes into account dis-
tribution parameters of each DCT coefficient as
nuisance parameters.

3 Further, assuming that all the parameters are un-
known, a simple approach is proposed to estimate
the expectation (or location) parameter of each
coefficient by using linear properties of DCT as
well as estimation of pixels expectation in spatial
domain; the variance (or scale) parameter is also
estimated locally.

4 The designed detector is improved by exploring a
DCT channel selection, which has been proposed
very recently [28, 29], that selects only a sub-set
of pixels or DCT coefficients in which embedding
is most likely and hence detection easier.

5 Numerical results show the sharpness of the the-
oretically established results and the good per-
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Figure 1: Illustration of the quantized DCT co-
efficient subband (2,1), (a) a high-texture im-
age: Baboon, (b) a low-texture image: Sky.

formance of the proposed statistical test. A com-
parison with the statistical test based on the
Laplacian distribution and on the assumption of
i. i. d. coefficient, see [22], shows the relevance of
the proposed methodology. In addition, compared
with prior-art WS detector [15], experimental re-
sults show the efficiency of the proposed detector.

1.3 Organization of the paper
This paper is organised as follows. Section 2 formalises
the statistical problem of detection of information hid-
den within DCT coefficients of JPEG images. Then,
Section 3 presents the optimal Likelihood Ratio Test
(LRT) for detecting the JSteg algorithm based on the
Laplacian distribution model. Section 4 presents the
proposed approach for estimating the nuisance param-
eters in practice, and compares our proposed detector
with WS detector [15] theoretically. Finally, Section 5
presents numerical results of the proposed steganalyser

on simulated and real images and Section 6 concludes
this paper. This paper is an extended version of [30]
that also includes the findings of [31] on channel selec-
tion [28, 29].

2 Problem Statement
In this paper, a grayscale digital image is repre-
sented, in the spatial domain, by a single matrix
Z = {zi,j} , i ∈ {1, . . . , I} , j ∈ {1, . . . , J}. The present
work can be extended to colour image by analysing
each colour channel separately. Most of digital images
are stored using the JPEG compression standard. This
standard exploits the linear Discrete Cosine Transform
(DCT), over blocks of 8× 8 pixels to represent an im-
age in the so-called DCT domain. In the present paper,
we avoid the description of the imaging pipeline of a
digital still camera; the reader can refer to [32] for a
description of the whole imaging pipeline and to [33]
for a detailed description of the JPEG compression
standard.

Let us denote DCT coefficients by the matrix V =
{vi,j}. An alternative representation of those coef-
ficients is usually adopted by gathering the DCT coef-
ficients that corresponds to the same frequency sub-
band. In this paper, this alternative representation is
denoted by the matrix U = {uk,l} , k ∈ {1, . . . ,K} , l ∈
{1, . . . , 64} with K ≈ I × J/64[2].

The coefficients from the first subband uk,1, often
referred to as DC coefficients, represent the mean of
pixels value over k-th block of 8×8 pixels. The modifi-
cation of those coefficients may be obvious and creates
artifacts that can be detected easily, hence, they are
usually not used for data hiding. Similarly, the JSteg
algorithm does not use the coefficients from the other
subbands, referred to as AC coefficients, if they equal
0 or 1. In fact, it is known that using the coefficients
equal to 0 or 1 modifies significantly statistical prop-
erties of AC coefficients; this creates a flaw that can
be detected.

The JSteg algorithm embeds data within DCT co-
efficients of JPEG images using the well-known LSB
(Least Significant Bit) replacement method, see details
in [34]. In brief, this method consists in substituting
the LSB of each DCT coefficient by a bit of the mes-
sage it is aimed to hide. The number of bit hidden per
coefficient, usually referred to as the payload, is de-
noted R ∈ (0, 1]. Since the JSteg algorithm does not
use each DCT coefficient, the payload will in fact be
measured in this paper as the number of bits hidden

[2]In this paper we assume, without loss of general-
ity, that both width and height of inspected image are
multiples of 8.
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per usable coefficients (that is the number of bits di-
vided by the number of AC coefficients that differ from
0 and 1).

Let us assume that the DCT coefficients are inde-
pendent and that they all follow the same probability
distribution, denoted Pθ, parametrised by the param-
eter θ which may change among the coefficients. Since
the DCT coefficients can only take value into a discrete
set, the distribution Pθ may be represented by its prob-
ability mass function (pmf) denoted Pθ = {pθ[u]}; for
simplicity[3], it is assumed in this paper that u ∈ Z.
Let us denote QRθ the probability distribution of us-
able DCT coefficients from the stego-image, after em-
bedding a message with payload R. A short calcula-
tion shows that, see [13, 12, 8], the stego-image dis-
tribution may be represented with following the pmf
QRθ = {qRθ [u]}u∈Z where

qRθ [u] = (1− R/2)pθ[u] + R/2pθ[ū], (1)

and ū = u+(−1)u represents the integer u with flipped
LSB. For the sake of clarity, let us denote θk,l the
distribution parameter of k-th DCT coefficient from
l-th subband and let θ = {θk,l} , k ∈ {1, . . . ,K} , l ∈
{2, . . . , 64} represents the distribution parameter of all
the AC coefficients.

When inspecting a given JPEG image, more pre-
cisely its DCT coefficients matrix U, in order to de-
tect data hidden with the JSteg algorithm, the prob-
lem consists in choosing between the two following hy-
potheses H0: “the coefficients uk,l follow the distribu-
tion Pθk,l

” and H1: “the coefficients uk,l follow the dis-
tribution QRθk,l

” which can be written formally as:

{
H0 :

{
uk,l∼Pθk,l

,∀k∈{1, . . . ,K},∀l∈{2, . . . , 64}
}
,

H1 :
{
uk,l∼QRθk,l

,∀k∈{1, . . . ,K},∀l∈{2, . . . , 64}
}
.

(2)

A statistical test is a mapping δ : ZI·J 7→ {H0,H1}
such that hypothesis Hi is accepted if δ(U) = Hi
(see [35] for details on hypothesis testing). As previ-
ously explained, this paper focuses on the Neyman-
Pearson bi-criteria approach: maximising the correct
detection probability for a given false-alarm probabil-
ity α0. Let:

Kα0
=

{
δ : sup

θ
PH0

[δ(U) = H1] ≤ α0

}
, (3)

be the class of tests with a false alarm probability
upper-bounded by α0. Here PHi

(A) stands for the

[3]In practice, DCT coefficients belong to set
[−1024, . . . , 1023], see [22].

probability of event A under hypothesis Hi, i = {0, 1},
and the supremum over θ has to be understood as
whatever the distribution parameters might be, in or-
der to ensure that the false alarm probability α0 can
not be exceed.
Among all the tests in Kα0 , it is aimed at finding a
test δ which maximises the power function, defined by
the correct detection probability:

βδ = PH1
[δ(U) = H1], (4)

which is equivalent to minimize the missed detection
probability α1(δ) = PH1 [δ(U) = H0] = 1− βδ.

In order to design a practical optimal detector, as re-
ferred in [11], for steganalysis in spatial domain, the
main difficulty is to estimate the distribution parame-
ters (expectation and variance of each pixel). On the
opposite, in the case of DCT coefficients, the applica-
tion of hypothesis testing theory to design an optimal
detector has previously being attempted with the as-
sumption that the distribution parameter remains the
same for all the coefficients from a same subband. With
this assumption, the estimation of the distribution pa-
rameters is not an issue because thousands of DCT
coefficients are available. However which distribution
model to choose remains an open problem.

The hypothesis testing theory has been applied for
the steganalysis of JSteg algorithm in [22] using a
Laplacian distribution model and using the assump-
tion that DCT coefficients of each subband are i. i. d. .
However, this pioneer work does not allow the design-
ing of an efficient test because a very important loss
of performance has been observed when comparing re-
sults on real images and theoretically established ones.
Such a result can be explained by the two following
reasons: 1) the Laplacian model might be not accu-
rate enough to detect steganagraphy and 2) the as-
sumption that the DCT coefficients of each frequency
subband are i. i. d. may be wrong. Recently, it has been
shown that the use of Generalised Gamma model or
even more accurate model [36, 37] allows the designing
of a test with very good detection performance. On the
opposite, in this paper, it is proposed to challenge the
assumption that all the DCT coefficients of a subband
are i. i. d. .

A typical example is given by Figure 2 and 3. Fig-
ure 2a (resp. Figure 2b) represents the DCT coef-
ficients of the subband (1,2) (resp. subband (4,4))
extracted from the image lena. Observing those two
graphs, it is obvious that the assumption of all those
coefficients being i. i. d. is doubtful. However, if it is
assumed that each coefficient has a different expecta-
tion, one can estimate this expected value and compute
the “residual noise”, that is the difference between the
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Figure 2: Illustrative examples of the value of
DCT coefficients of two subbands from lena
image. Those examples show that the assump-
tion that DCT coefficients are i. i. d. within a
subband hardly holds true in practice.

observation and the computed expectation. Such re-
sults are shown in Figure 3, with two different models
for estimating the expectation of DCT coefficients of
the same two subbands from lena. Obviously, residual
noises look much more i. i. d. than the original DCT
coefficients.

In the following section, we detail the statistical test
that takes into account both the expectation and the
variance as nuisance parameters and we study the op-
timal detection when those parameters are known. A
discussion on nuisance parameters is also provided in
Section 4.

3 LRT for two simple hypothesis
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Figure 3: Illustrative examples of DCT coeffi-
cients of residual noise, obtained by denoising
image. The same two DCT subbands, as in
Figure 2 are extracted the residual noise of
lena image. On those examples, the assump-
tion of i.i.d. distribution seems to be more re-
alistic.

3.1 Optimal detection framework

When the payload R and the distribution parameters

θ = {θk,l} , k ∈ {1, . . . ,K} , l ∈ {2, . . . , 64} are known,

problem (2) is reduced to a statistical test between

two simple hypotheses. In such a case, the Neyman-

Pearson Lemma [35, theorem 3.2.1] states that the

most powerful test in the class Kα0
(3) is the LRT

defined, on the assumption that DCT coefficients are
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Figure 4: Statistical distribution of the DCT
coefficients of the residual noise plotted in
Figure 4a. For comparison, the Laplacian PDF
with parameters estimated by the MLE are
also shown. Note that for a meaning compar-
ison, Figure 4b shows the results after nor-
malization by the estimated scale parameter
b̂k.

independent, as:

δlr(U) =





H0 if Λlr(U) =

K∑

k=1

64∑

l=2

Λlr(uk,l) < τ lr,

H1 if Λlr(U) =

K∑

k=1

64∑

l=2

Λlr(uk,l) ≥ τ lr,

(5)

where the decision threshold τ lr is the solution of the
equation PH0

[
Λlr(U) ≥ τ lr

]
= α0, to ensure that the

false alarm probability of the LRT equals α0, and the
log Likelihood Ratio (LR) for one observation is given,

by definition, by:

Λlr(uk,l) = log

(
qRθk,l

[uk,l]

pθk,l
[uk,l]

)
. (6)

In practice, when the rate R is not known one can
try to design a test which is locally optimal around
a given payload rate, named Locally Asymptotically
Uniformly Most Powerful (LAUMP) test, as proposed
in [6, 8] but this lies outside the scope of this paper.

From the definition of pθk,l
[uk,l] and qRθk,l

[uk,l] (1), it

is easy to write the LR (6) as:

Λlr(uk,l) = log

(
1− R

2
+
R

2

pθk,l
[ūk,l]

pθk,l
[uk,l]

)
, (7)

where, as previously defined, ūk,l = uk,l + (−1)uk,l

represents the DCT coefficient uk,l with flipped LSB.

3.2 Statistical performance of LRT
Accepting, for a moment, that one is in this most
favourable scenario, in which all the parameters are
perfectly known, we can deduce some interesting re-
sults. Due to the fact that observations are considered
to be independent, the LR Λlr(U) is the sum of ran-
dom variables and some asymptotic theorems allow
to establish its distribution when the number of coef-
ficients becomes “sufficiently large”. This asymptotic
approach is usually verified in the case of digital im-
ages due to the very large number of pixels or DCT
coefficients.

Let us denote EHi(θk,l) and VHi(θk,l) the expecta-
tion and the variance of the LR Λlr(uk,l) under hypoth-
esisHi, i = {0, 1}. Those quantity obviously depend on
the parameterized distribution Pθk,l

. The Lindeberg’s
central limit theorem (CLT) [35, theorem 11.2.5] states
that as K tends to infinity it holds true that[4]:

K∑

k=1

64∑

l=2

Λlr(uk,l)− EHi(θk,l)

(
K∑

k=1

64∑

l=2

VHi(θk,l)

)1/2

d−→ N (0, 1) , i = {0, 1} ,

(8)

where
d−→ represents the convergence in distribution

and N (0, 1) is the standard normal distribution, i.e.
with zero mean and unit variance.

[4]Note that we refer to the Lindeberg’s CLT, whose
conditions are easily verified in our case, because the
random variable are independent but are not i. i. d.
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This theorem is of crucial interest to establish the
statistical properties of the proposed test [38, 7, 37,
22]. In fact, once the moments have been calculated
under both Hi, i = {0, 1}, one can normalise under
hypothesis H0 the LR Λlr(U) as follows:

Λ
lr

(U) =
Λlr(U)−∑K

k=1

∑64
l=2EH0(θk,l)(∑K

k=1

∑64
l=2 VH0(θk,l)

)1/2
,

=

∑K
k=1

∑64
l=2 Λlr(uk,l)− EH0

(θk,l)(∑K
k=1

∑64
l=2 VH0(θk,l)

)1/2
. (9)

Since this essentially consists in adding a deterministic
value and scaling the LR, this operation of normalisa-
tion preserves the optimality of the LRT. It is thus
straightforward to define the normalised LRT with

Λ
lr

(U) by:

δ
lr

(U) =

{
H0 if Λ

lr
(U) < τ lr

H1 if Λ
lr

(U) ≥ τ lr.
(10)

It immediately follows from Lindeberg’s CLT (8) that

Λ
lr

(U) asymptotically follows, as K tends to infinity,
the normal distribution N (0, 1). Hence, it is immedi-
ate to set the decision threshold that guarantee the
prescribed false alarm probability:

τ lr = Φ−1 (1− α0) , (11)

where Φ and Φ−1 respectively represent the cumula-
tive distribution function (cdf) of the standard normal
distribution and its inverse. Similarly, denoting

mi=
K∑

k=1

64∑

l=2

EHi
(θk,l);σ

2
i =

K∑

k=1

64∑

l=2

VHi
(θk,l) , i={0, 1},

it is also straightforward to establish the detection
function of the LRT given by:

β
δ
lr = 1−Φ

(
σ0

σ1
Φ−1 (1− α0) +

m0 −m1

σ1

)
. (12)

Equations (11) and (12) emphasize the main advan-
tage of normalising the LR as described in relation (9):
it allows to set any of threshold that guarantee a false
alarm probability independently from any distribution
parameters and, this is particularly crucial because
digital images are heterogeneous, their properties vary
for each image. Second, the normalisation allows to
easily establish the detection power which again, is
achieved, for any distribution parameters and hence,
for any inspected image.

3.3 Application with Laplacian distribution

In the case of Laplacian distribution, the framework of
hypothesis testing theory has been applied for the ste-
ganalysis of JSteg in [22] in which the moments of LR
are calculated under the two following assumptions:
1) all the DCT coefficients from the same subband are
i. i. d. and 2) the expectation of each DCT coefficient
is zero.
The continuous Laplacian distribution has the follow-
ing probability density function:

fµ,b(x) =
1

2b
exp

(
−|x− µ|

b

)
(13)

where µ ∈ R, sometimes referred to as the location pa-
rameter, corresponds to the expectation, and b > 0 is
the so-called scale parameter. During the compression
of JPEG images, the DCT coefficients are quantised.
Hence, let us defined the discrete Laplacian distribu-
tion by the following pmf, see details in Appendix A:

fµ,b[k]
def.
= P

[
x ∈ [∆(k − 1/2),∆(k + 1/2)[

]

=





exp
(
− |∆k−µ|b

)
sinh

(
∆
2b

)
if µ

∆ /∈[k −1/2;k+1/2[

1−exp
(
−∆

2b

)
cosh

(
−∆(k)−µ

2b

)
otherwise

(14)

where ∆ is the quantization step.
From the expression of the discrete Laplacian distribu-
tion (14) and from the expression of LR (7), one can
express the LR for the detection of JSteg under the
assumption that DCT coefficients follow a Laplacian
distribution, as follows (see Appendix B):

Λlr
µ,b[k]=log

(
1−R

2
+
R

2
exp

[
∆

b
sign(∆k − µ)(k − k̄)

])
.

(15)

where DCT coefficient k is referred as uk,l in Eq. (7).
It can be noted that this expression (15) of the LR
is almost the same as the one obtained in [22] assum-
ing that all DCT coefficients have a zero-mean, only
the sign term sign(∆k − µ) becomes sign(k) when as-
suming a zero-mean. It should also be noted that the
log-LR equals 0 for every DCT coefficient whose value
is 0 or 1 because the JSteg algorithm does not embed
hidden data in those coefficients. In the present pa-
per, the moments of the LR (15) are not analytically
established, the reader interested can refer to [22].
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4 Proposed approach for estimating the
nuisance parameters in practice

4.1 Estimation of expectation of each DCT
coefficient

As already explained, most of statistical models of
DCT coefficients assume that within a subband the
coefficients are i. i. d. . However, as illustrated in Fig-
ure 1b and 2 this assumption is doubtful in practice.
Another way to explain why the DCT coefficients may
not be i. i. d. is to consider a block of 8×8 pixels in spa-
tial domain, say the first, z = zi,j , i ∈ {1, . . . , 8} , j ∈
{1, . . . , 8}. The value of those pixels can be decom-
posed as:

zi,j = xi,j + ni,j ,

where xi,j is a deterministic value that represents the
expectation of pixel at location (i, j) and ni,j is the
realisation of a random variable representing all noises
corrupting the inspected image. Clearly, this decompo-
sition can be done for the whole block z = x+n, where
x = {xi,j} and n = {ni,j}. Since the DCT transfor-
mation is linear the DCT coefficient of any block may
be expressed as :

DCT(z) = DT zD = DT (x + n)D

=DTxD + DTnD = DCT(x) + DCT(n), (16)

where DCT represents the DCT transform and D is
the change of basis matrix from spatial to DCT basis,
often referred as the DCT matrix.
It makes sense to assume that the expectation of the
noise component n has a zero-mean in the spatial and
in the DCT domain. On the opposite, it is difficult to
justify that the DCT of pixels’ expectation x should
necessary be around zero. Actually, this assumption
holds true if and only if the expectation is the same
for of all the pixels from a block: ∀i ∈ {1, . . . , 8} ,∀j ∈
{1, . . . , 8} , xi,j = x, see [36, 37, 39] for details.

On the opposite, in the paper, it is mainly aimed at
estimating the expectation of each DCT coefficient. To
this end, it is proposed to decompress a JPEG image V
into the spatial domain to obtain Z, then to estimate
the expectation of each pixel in the spatial domain Ẑ
by using a denoising filter. Then this denoised image
Ẑ is transformed back into the DCT domain to finally
obtain the estimated value of all DCT coefficients,
denoted V̂ = {v̂i,j} , i ∈ {1, . . . , I} , j ∈ {1, . . . , J}.
Several methods have been tested to estimate the ex-
pectation of pixels in the spatial domain Ẑ, namely,
the BM3D collaborative filtering [40], K-SVD sparse
dictionary learning [41], non-local weighted averaging
method from NL-means [42] and the wavelet denoising
filter [43]. The codes used for the methods [40, 41, 42]

have been downloaded from the Image Processing On-
Line website[5]. The codes used for the method [43]
have been downloaded from DDE [6].

4.2 A local estimation of b
In addition, the proposed model also assumes that the
scale parameter bk,l is different for each DCT coeffi-
cient. The estimation of this parameter, for each DCT
coefficient, is based on the WS Jpeg method to locally
estimate the variance; that is, for coefficients vi,j , it
simply consists of the sample variance of the DCT coef-
ficients of the same subband from neighbouring blocks:

σ̂2
i,j =

1

7

1∑

s=−1

1∑

t=−1

(s,t)6=(0,0)

(vi+8s,j+8t − v̄i,j)2
, (17)

where v̄i,j is the sample mean: 1
8

∑1
s=−1

∑1
t=−1

(s,t)6=(0,0)

vi+8s,j+8t.

Let us recall that the Maximum Likelihood Estima-
tion (MLE) of the scale parameter of Laplacian dis-

tribution from realisations x1, . . . , xN is given by b̂ =
N−1

∑N
n=1 |xn − µ|. The local estimation of the scale

parameter it is proposed to use in this paper is given
by:

b̂i,j =
1

8

1∑

s=−1

1∑

t=−1

(s,t)6=(0,0)

|vi+8s,j+8t − v̂i+8s,j+8t| , (18)

where v̂i+8s,j+8t is the estimation of expectation of
each DCT coefficient by using denoising filter previ-
ously defined. As in the WS Jpeg algorithm, this ap-
proach raises the problem of scale parameter estima-
tion for blocks located on the sides of the image. In
the present paper, as in the WS Jpeg method, it is
proposed not to use those blocks in the test.

4.3 A channel selection to improve the method
Inspired by the channel selection algorithms (See [28,
29]), it is proposed to improve our detector with
a weighting factor (WF). In practice, WF is gener-
ated from the quantized and rounded “residual noise”,
which is calculated by the following steps:
1 By uncompressing the JPEG format image, we

obtain the intensity value of a JPEG image in the
spatial domain.

2 By using a denoising filter, we extract the raw
“residual noise” in the spatial domain.

[5]Image Processing On-Line journal is available at:
http://www.ipol.im
[6]Source codes are available at: http://dde.binghamton.edu
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Table 1: Ratio (%) comparison before and after embedding.
Inspected images index

No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 On average

Cover N 0.23 0.17 0.56 0.61 0.21 0.03 0.87 0.41 1.23 0.33 0.63

Stego N 0.23 0.17 0.56 0.62 0.21 0.04 0.88 0.42 1.22 0.34 0.64

Cover S 0.98 1.01 1.06 1.03 0.90 1.07 1.02 0.93 1.26 1.03 7.45

Stego S 0.98 1.00 1.06 1.03 0.89 1.07 1.03 0.90 1.27 1.03 7.52

Cover D 1.12 0.81 2.46 2.49 0.80 0.08 5.07 2.42 7.56 0.34 1.44

Stego D 4.48 2.85 7.63 7.60 2.27 1.07 17.1 7.92 20.5 1.04 4.95

Similarity 89.5 91.5 94.2 93.0 80.7 80.7 93.9 93.7 93.3 93.9 92.8

3 By using DCT transformation, we transform the
raw “residual noise” from the spatial to the fre-
quency domain.

4 By using quantization table, we can obtain the
quantized “residual noise”.

5 By rounding the quantized “residual noise” in
the frequency domain, the quantized and rounded
“residual noise” is obtained.

6 If a quantized and rounded “residual noise” takes
zero, WF equals 0; If not, WF equals 1.

Thus, based on our proposed WF, it is proposed to
categorize “residual noise” set into two sub-sets: “non-
zero” sub-set and “zero” sub-set. To verify the effec-
tiveness of our improved algorithm, it is proposed to
randomly choose ten exemplary images which are com-
pressed to JPEG format images with QF = 70, embed-
ding rate R = 0.05. Also, all the images of BossBase
database [27] are used for computing the average value.
Table 1 gives the statistical ratio of the data in which
the annotations of the table are as followed:
• Cover N: denotes the ratio of “non-zero” sub-set

to “residual noise” set of a cover image.
• Stego N: denotes the ratio of “non-zero” sub-set

to “residual noise” set of a stego image.
• Cover S: denotes the standard deviation of

“residual noise” set from a cover image.
• Stego S: denotes the standard deviation of “resid-

ual noise” set from a stego image.
• Cover D: denotes the ratio of the DCT coeffi-

cients used by JSteg in “non-zero” sub-set to the
DCT coefficients used by JSteg in “residual noise”
set from a cover image .
• Stego D: denotes the ratio of the DCT coeffi-

cients used by JSteg in “non-zero” sub-set to the
DCT coefficients used by JSteg in “residual noise”
set from a stego image .
• Similarity: denotes the ratio of the same position

in “non-zero” sub-set before and after embedding.

In our proposed statistical test, the number of the
selected coefficients for the detection should be kept

very close before and after embedding. As Table 1 il-
lustrated, the ratio of Cover N and Stego N basi-
cally remains the same before and after embedding,
which reveals the proportion of the coefficients used
for the test nearly the same. Similarly, the ratio of
Cover S and Stego S can also verify our assumption
that the statistical number nearly remains the same
before and after embedding. The ratio of Similarity
which is kept at the high value signifies most of “resid-
ual noise” are chosen at the same position. Then the
only difference is the comparison between Cover D
and Stego D. It is should be noted that if all DCT
coefficients used by JSteg are included in “non-zero”
sub-set, then the ratio equals 100%. It is observed that
only a few of DCT coefficients used by JSteg algo-
rithm is included in “non-zero” sub-set. Nevertheless,
after embedding, the ratio of Stego D is largely im-
proved, compared with the ratio of Cover D. It can
be assumed that by using a WF, more “residual noise”
from the embedding positions are counted. Besides,
prior to embedding secret information, we never know
which position will be embedded, the very low ratio of
Cover D is reasonable.

By investigating the “non-zero” and “zero” sub-set,
although we can not capture all the embedding posi-
tions in the DCT domain, it is totally enough to detect
the JSteg steganography. Besides, all the coefficients in
“zero” sub-set are not counted in our proposed test. On
average, for a cover image with the size of 512 × 512,
0.63% of the coefficients are kept to compute the test;
0.64% of the coefficients from a stego image are used.
As the embedding rate R = 0.05, it is obvious that
most of DCT coefficients remain the same before and
after embedding. Thus, it is not necessary to compute
these values. Furthermore, the LR values of these DCT
coefficients without embedding any information prob-
ably mask or disturb LR from DCT coefficients with
JSteg embedding.

4.4 Design of proposed test
In Section 3 the framework of hypothesis testing theory
has been presented assuming that distribution param-
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eters are known for each DCT coefficient. To design a
practical test, a usual solution consists in replacing the
unknown parameter by its ML estimation. This leads
to the construction of a Generalised LRT. A similar
construction is adopted in this paper, using the ad hoc
estimators presented at the beginning of section 4, in-
stead of using the ML method to estimate the distribu-
tion parameters of each DCT coefficient. The proposed
test is thus defined as:

δ̂(U) =





H0 if Λ̂(U) =

K∑

k=1

64∑

l=2

Λ̂cs(uk,l) < τ̂,

H1 if Λ̂(U) =

K∑

k=1

64∑

l=2

Λ̂cs(uk,l) ≥ τ̂ ,
(19)

where the channel selection decision statistic Λ̂cs(uk,l) =

Λ̂(uk,l) · wk,l for a single DCT coefficient is given and
a weighting factor wk,l selects the DCT channel. Next,

let us study the Λ̂(uk,l) to verify the effectiveness of
our proposed test.

To verify our improvement based on the Laplacian
test, see [22], it is proposed to consider the weighing
factor wk,l as a constant equal to 1. The scale param-

eter b̂ is estimated by using MLE and the location
parameter is ignored (See details in [22]). The LR is
given by:

Λ̂(uk,l) = log

(
1 +

R

2
+
R

2
exp

[
∆

b̂
sign(∆k)(k − k̄)

])
.

(20)

The first improvement of the previous LR is the con-
sideration of the location parameter µ̂k,l (See 4.1). The
new LR is designed by:

Λ̂1(uk,l)=log

(
1+

R

2
+
R

2
exp

[
∆

b̂
sign(∆k−µ̂k,l)(k−k̄)

])
.

(21)

The second improvement is the estimation of the scale
parameter b̂k,l (See 4.2) and ignore the location pa-
rameter. The LR is designed by:

Λ̂2(uk,l) =log

(
1 +

R

2
+
R

2
exp

[
∆

b̂k,l
sign(∆k)(k − k̄)

])
.

(22)

The third improvement is to give the assumption that
DCT coefficients are i. i. d. . The scale parameter b̂k,l
and the location parameter µ̂k,l of the distribution are

estimated separately by using our proposed algorithms
of 4.1 and 4.2.

Λ̂3(uk,l)=log

(
1+

R

2
+
R

2
exp

[
∆

b̂k,l
sign(∆k−µ̂k,l)(k−k̄)

])
.

(23)

Moreover, it is proposed to explore the effectiveness
of introducing a weighing factor wk,l which is defined
as:

wk,l =

{
0 if ∆k−µ̂k,l ∈ (−0.5, 0.5)

1 otherwise.
(24)

The last LR is obtained by multiplying (23) by wk,l :

Λ̂cs(uk,l) = Λ̂3(uk,l)wk,l (25)

It is should be noted that (20) is the algorithm from
[22]. In Section 5, the specific comparison of the de-
tectors is presented. In order to have a normalised de-
cision statistic for the whole image, Λ̂(U) is defined
as:

Λ̂(U) =
1

SL

K∑

k=1

64∑

l=2

Λ̂cs(uk,l)− EH0
(µ̂k,l, b̂k,l)

with S2
L =

K∑

k=1

64∑

l=2

VH0
(µ̂k,l, b̂k,l). (26)

4.5 Comparison with prior-art
The WS Jpeg, as well as the WS for spatial domain,
is based on the underlying assumption that the ob-
servations follow a Gaussian distribution. As recently
shown [6, 8], the WS implicitly assumes that the quan-
tization step is negligible. Let us rewrite the LR test
for JSteg detection based on a Gaussian distribution
model of DCT coefficients. Let X be a random vari-
able following a quantized Gaussian distribution. Ex-
ploiting the assumption that the quantization step is
negligible compared to noise standard deviation allows
the writing of:

P[X = k] =

∫ ∆(k+1/2)

∆(k−1/2)

1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
dx

≈ ∆

σ
√

2π
exp

(
− (∆k − µ)2

2σ2

)
(27)

Putting this expression of the pmf under hypothesis
H0 into the LR (2), and assuming that the quantiza-
tion step is negligible compared to the noise standard
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deviation, ∆ << σ, it is immediate to obtain the fol-
lowing expression of the LR under the assumption of
Gaussian distribution of DCT coefficient

log


1 +

R

2
+
R

2

exp
(
− (∆k̄−µ)2

2σ2

)

exp
(
− (∆k−µ)2

2σ2

)




≈R∆

2σ2
(k − k̄) (∆k − µ) (28)

=
︷ ︸︸ ︷
wσ

︷ ︸︸ ︷
±1

︷ ︸︸ ︷
(∆k − µ)

see details in Appendix C.
This expression highlights the well known fact the WS
consists in fact of three terms: 1) the term wσ which is
a weight so that pixels or DCT coefficients with highest
variance have a smallest importance, 2) the term (k−
k̄) = ±1 according the LSB of k and 3) the term (∆k−
µ).

In comparison, the expression of the LR for a Lapla-
cian distribution model (15), as well as the expression
of the proposed test with estimates (21) can be ap-
proximated by (See details in Appendix B):

R∆

2b
(k − k̄) sign(∆k − µ) (29)

=
︷︸︸︷
wb

︷ ︸︸ ︷
±1

︷ ︸︸ ︷
sign(∆k − µ)

which is also made of three terms; the two first are
roughly similar to the two first terms of the WS : 1)
the term wb is a weight so that DCT coefficients with
highest “scale” b have a smallest importance, note that
the variance is proportional to b2, 2) the term (k −
k̄) = ±1 according to the LSB of k. However, in the
expression of the LR based on the Laplacian model
the term (∆k−µ) of the WS is replaced with its sign.
This shows that the statistical tests based on Laplacian
model and based on Gaussian model are essentially
similar.

5 Numerical simulations
5.1 Results on simulated images
One of the main contributions of this paper is to show
that the hypothesis testing theory can be applied in
practice to design a statistical test with known statis-
tical properties for JSteg steganalysis.

To verify the sharpness of the theoretically estab-
lished results, we generate 1000 sets of 4000 ran-
dom variable (a Monte-Carlo simulation) following the
Laplacian distribution, where R = 0.05, µ = 0 and b
distributed from 1 to 10 with a step of 0.5. Then, the
expectation and variance values are calculated empir-
ically and theoretically. As shown in Figure 5, the em-
pirically calculated moments are almost equal to the
analytically established ones.

1 3 5 7 9 10

−0.5

0

0.5

1

1.5

b
 

 

Theoretical expectation

Empirical expectation

Theoretical variance

Empirical variance

Figure 5: Expectation m0 and variance σ2
0 as a

function of the scale parameter b theoretically
and empirically.
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Figure 6: Comparison between empirical and

theoretical distribution of Λ
lr

(U).

Subsequently, to verify the effectiveness of the estab-

lished LRT δ
lr

(U), again, a Monte-Carlo simulation
is performed by repeating 10000 times using a vector
64×4096 following the Laplacian distribution, in which
the scale parameter is selected arbitrarily as 3 and the
location parameter 0. Under the hypothesisH0 andH1

respectively, Figure 6 presents the comparison between

empirical and theoretical distribution of Λ
lr

(U). The
results highlight the validity of the proposed test (10).

Figure 7 gives the comparison between the empirical
and theoretical FAR α0 respectively of the test (10).
This particularly demonstrates that two curves are
very close. Figure 8 offers the Receiver Operating
Characteristic (ROC) comparison, that is the detec-
tion power β

δ
lr as a function of FAR α0, of both em-

pirical and theoretical established results in 11 and 12.
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Figure 7: FAR α0 as a function of the threshold
τ lr.
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Figure 8: Detection power β
δ
lr as a function of

FAR α0 (ROC curve).

5.2 Results on real images
Another contribution of this paper is to design the
optimal test with estimated parameters to break JSteg
algorithm in practical case.

First, let us investigate our proposed detectors (21)-
(23). It is proposed to perform a numerical simula-
tion over the 1000 images from BossBase [27] which
have been compressed in JPEG with quality factor
70. The payload, or embedding rate, R is set at 0.05
for JSteg algorithm. For fairly comparison with the
detector from [22], it first shows the improvement
provided by the proposed model with wk,l = 1. As
Figure 9a illustrates, all the proposed detectors out-
performs Λ̂(uk,l) (20) proposed by [22]. Morvover,
in the following investigation, it is proposed to use
Λ̂cs(uk,l) (25). Then, it is proposed to give the per-
formance of this detector on 1000 simulated images in
which a DCT subband is generated by strictly follow-
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(a) Comparison of detection performance without channel
selection (constant weighting factor wk,l = 1).
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(b) Comparison of detection performance with channel se-
lection (weighting factor wk,l from (24)).

Figure 9: ROC curves comparison, detection
power as a function of FAR α0.

ing the Laplacian distribution (See Figure 9b). Then
a comparison with simulations of the LR test shows
the loss of power due to the estimation of expectation
and scale parameters. It is should be noted that in
all our proposed detectors in this paper, Λ̂(uk,l) (23)
with wk,l (24) performs best. Thus, it is proposed to
use it as our optimal steganalyser for competing with
the state-of-the-art JSteg detectors. It is should be em-
phasized that in Figure 9, the wavelet denoising filter
[43] is used for estimating the location parameter µ̂k,l
(See 4.1).

To verify the relevance of the proposed methodol-
ogy, it is proposed to compare the proposed statistical
test with two other detectors. The first chosen com-
petitor is the statistical test proposed in [22] as it is
also based on Laplacian model but does not take into
account the distribution parameters as nuisance pa-
rameters; it considers that DCT coefficients are i. i. d. ,
following a Laplacian distribution with zero-mean. The
comparison with this test is meaningful as it allows
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us to measure how much the detection performance is
improved by removing the assumption that the DCT
coefficients of each subband are i. i. d. . The second cho-
sen competitor is the WS [15] due to its similarity with
the proposed statistical test, see details in Section 4.5.

For a large scale verification, it is proposed to use
the BOSS database, made of 10 000 grayscale images of
size 512×512 pixels, used with payload R = 0.05. Prior
to our experiments, the images have been compressed
in JPEG using the linux command convert which uses
the standard quantization table. Note also that all the
JSteg steganography was performed using a Matlab
source code we developed based on Phil Sallee’s Jpeg
Toolbox[7]. Three denoising methods have been tested
to estimate the expectation of each DCT coefficient,
namely the K-SVD, the BM3D, the wavelet denoising
algorithms.

Figure 10 shows the detection performances obtained
over the BOSS database compressed with quality fac-
tor (QF) 70. The detection performances are shown as
ROC curves, that is the detection power is plotted as
a function of false-alarm probability. The Figure 10a
particularly emphasizes that the statistical test based
on the Laplacian model does not perform well while
the proposed methodology which takes into account
the Laplacian distribution parameters as nuisance pa-
rameters allows us to largely improve the performance.
Similarly the WS detector achieves overall good detec-
tion performance. However, it can be shown on Fig-
ure 10b, which presents the same results using a log-
arithmic scale, that for low false-alarm probabilities,
the performance of the WS significantly decreases. On
the opposite, the proposed statistical test still performs
well.
Among the four denoising algorithms that have been
tested, the BM3D achieves the best performance but
it can be observed on Figure 10 that the performance
obtained using the K-SVD and using the wavelet de-
noising methods are also very good. The performance
of NL means method is comparable with WS detector
[15].

To extend the results previously presented, a similar
test has been performed over the BOSS database us-
ing the quality factor 85. The detection performance
obtained by the proposed test and by the competitors
are presented in Figure 11. Again, this figure shows
that based on the Laplacian model, the statistical
test assuming that DCT coefficients of a subband are
i. i. d. has an unsatisfactory performance. It can also be
noted that even though the WS performs slightly bet-
ter for low false-alarm probability, compared to the re-
sults obtained with quality factor 70, it performs much
worse than the proposed statistical test.

[7]Phil Sallee’s Jpeg Toolbox is available at : http://dde.

binghamton.edu/download/jpeg_toolbox.zip
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(a) Comparison of detection performance for BOSS
database with quality factor 70 (linear scale).
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Figure 10: Comparison of detection perfor-
mance for BOSS database with quality factor
70.

6 Conclusion and future works
This paper aims at improving the optimal detection of
data hidden within the DCT coefficients of JPEG im-
ages. Its main originality is that the usual Laplacian
model is used as a statistical model of DCT coeffi-
cients but, opposed to what is usually proposed, it is
not assumed that all DCT coefficients from a subband
arei. i. d. . This leads us to consider the Laplacian dis-
tribution parameters, namely the expectation e and
the scale parameter b, as nuisance parameters as they
have no interest for the detection of hidden data, but
must be carefully taken into account to design an ef-
ficient statistical test. Numerical results show that by
estimating those nuisance parameters, the Laplacian
model allows the designing of an accurate statistical
test which outperforms the WS. The comparison with
the optimal detector based on the Laplacian model
and on the assumption that all DCT coefficients of a
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Figure 11: Comparison of detection perfor-
mance for BOSS database with quality factor
85 (logarithmic scale).

subband are i. i. d. shows the relevance of the proposed
approach.

A possible future work would be to apply this ap-
proach with state-of-the-art statistical model of DCT
coefficients, such as the Generalized Gaussian or the
Generalized Gamma model. This could provide im-
provements in the detection performance at the cost
of a higher complexity.
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Appendix A: Quantized Laplacian PMF
Let X be a Laplacian random variable with expecta-
tion µ and variance b. Its pdf is thus, see (13):

fµ,b(x) =
1

2b
exp

(
−|x− µ|

b

)
,

and a straightforward calculation shows that its cdf is
given by:

Fµ,b(x) =
1

2
+

1

2
sign(x− µ)

(
1−exp

(
−|x− µ|

b

))
,

(30)

=





1

2
exp

(
x− µ
b

)
if x < µ,

1− 1

2
exp

(
−x− µ

b

)
if x ≥ µ.

(31)

Now consider the result from quantization of this ran-
dom variable Y = bX/∆c, it is immediate to establish
the pmf of this random variable. Let us first consider
the case ∆(k + 1/2) < µ (due to the symmetry of
Laplacian pdf, the case ∆(k−1/2) > µ is treated sim-
ilarly).
The pmf of Y is given by:

P[Y = k] = P[∆(k − 1/2) ≤ X < ∆(k + 1/2)],

=
1

2
exp

(
∆(k+1/2)−µ

b

)

− 1

2
exp

(
∆(k − 1/2)−µ

b

)
,

=
1

2
exp

(
∆k − µ

b

)
exp

(
∆

2b

)

− 1

2
exp

(
∆k − µ

b

)
exp

(−∆

2b

)
,

= exp

(
∆k − µ

b

)
sinh

(
∆

2b

)
,

Applying similar calculations for case ∆(k− 1/2) > µ,
one gets:

P[Y = k] = exp

(
−|∆k − µ|

b

)
sinh

(
∆

2b

)
, (32)

which corresponds to the pmf given in Eq. (14). The
case ∆(k− 1/2) < µ < ∆(k+ 1/2) is treated similarly.

Appendix B: Log-Likelihood Ratio
Calculation

By putting the expression of quantised Laplacian
pmf (32) into the expression of the LR (7), it is imme-
diate to write:

Λlr(uk,l)=log


1−R

2
+
R

2

exp
(
− |∆k̄−µ|b

)
sinh

(
∆
2b

)

exp
(
− |∆k−µ|b

)
sinh

(
∆
2b

)


 .
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Let us study the term:

exp
(
− |∆k̄−µ|b

)
sinh

(
∆
2b

)

exp
(
− |∆k−µ|b

)
sinh

(
∆
2b

) =
exp

(
− |∆k̄−µ|b

)

exp
(
− |∆k−µ|b

) ,

=
exp

(
− |∆k+∆(k̄−k)−µ|

b

)

exp
(
− |∆k−µ|b

) ,

=
exp

(
− |∆k−µ|b

)
exp

(
∆ sign(∆k−µ)(k−k̄)

b

)

exp
(
− |∆k−µ|b

) ,

= exp

(
∆ sign(∆k − µ)(k − k̄)

b

)
. (33)

From this Eq. (33), it is immediate to establish the
expression (15):

log

(
1− R

2
+
R

2
exp

(
∆ sign(∆k − µ)(k − k̄)

b

))
.

By using a Taylor expansion, Λlr(uk,l) can be approx-
imated by:

log

(
1−R

2
+
R

2

(
1+

∆ sign(∆k − µ)(k − k̄)

b

))

≈ log

(
1 +

(
R∆ sign(∆k − µ)(k − k̄)

2b

))
,

≈R∆

2b
(k − k̄) sign(∆k − µ).

Appendix C: LR Based on the Gaussian
Model (WS)

Let X be a Gaussian random variable with expectation
µ and variance σ2. Define the quantized Gaussian ran-
dom variable as follows Y = bX/∆c, its pmf is given
by Pµ,σ = {pµ,σ[k]}∞k=−∞ with:

pµ,σ[k]=P[Y = k]=

∫ ∆(k+1/2)

∆(k−1/2)

1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
dx.

Assuming that the quantization step ∆ is “small
enough” compared to the variance ∆ << σ, it holds
true that [6, 44]:

pµ,σ[k] ≈ ∆

σ
√

2π
exp

(
− (∆k − µ)2

2σ2

)
, (34)

and

pµ,σ[k] + pµ,σ[k̄] ≈ 2∆

σ
√

2π
exp

(
− (∆ (k+k̄)

2 − µ)2

2σ2

)
.

(35)

Let us rewrite the LR for the detection of JSteg (7)
as follows

Λlr(uk,l) = log

(
1− R

2
+
R

2

pµ,σ[k̄]

pµ,σ[k]

)
,

= log

(
1−R+

R

2

pµ,σ[k̄] + pµ,σ[k]

pµ,σ[k]

)
.

(36)

Using the expressions (34) and (35) let us study the
following ratio:

pµ,σ[k̄] + pµ,σ[k]

pµ,σ[k]
= 2

exp

(
−∆

(k+k̄)
2 −µ)2

2σ2

)

exp
(
− (∆k−µ)2

2σ2

) ,

=2

exp

(
− (∆k−µ+∆/2(k̄−k))

2

2σ2

)

exp
(
− (∆k−µ)2

2σ2

) ,

=2
exp
(
− (∆k−µ)2

2σ2

)
exp
(

∆(∆k−µ)(k−k̄)
2σ2

)
exp
(
− ∆2

8σ2

)

exp
(
− (∆k−µ)2

2σ2

) ,

=2 exp

(
∆(∆k − µ)(k − k̄)

2σ2

)
exp

(
− ∆2

8σ2

)
. (37)

Putting the expression (37) into the expression of the
log-LR (36) immediately gives:

Λlr(uk,l)=log

(
1+R

(
exp

(
∆(∆k−µ)(k−k̄)

2σ2

)
exp

(
−∆2

8σ2

)
−1

))

(38)

from which a Taylor expansion around ∆/σ = 0, this
results from the assumption that ∆ << σ, and finally
gives the well-known expression of the WS:

Λlr(uk,l)≈
R∆

2σ2
(k − k̄)(∆k − µ) (39)
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